Lecture 7 Summary of optical phenomena and properties

Concept or process	Equation or variable name	Equation and (or) diagram
The Conservation Law	Spectral absorptance	
	reflectance	
	Spectral transmittance	
Refraction	Refractive index (η)	
	Snell's law Of refraction	refractive indices
Dispersion		

late of a sec	1
Interference	
(superposition)	
(eaperpeenen)	
Constructive	
Destructive	
Destructive	
Diffraction:	minima where
Single slit	
Olligie Sit	
	$Wsin\theta = m\lambda$ or $sin\theta = m\lambda/W$
	angular width of central maximum $\approx \lambda/W$
	physical half-width of central maximum at distance b from
	slit $\approx b\lambda/W$
	distance between side fringes = λ/W
	÷
	see Fig. LN3

Diffraction: Multiple slits	maxima at $d\sin\theta = m\lambda$ or $\sin\theta = m\lambda/d$
	angular width = λ/Nd
	distance between fringes = λ/d
	see Fig. LN3A-1 & -2

Comparison of single and multiple slit diffraction Fig. LN3A-2. Single- and Multiple Slit Diffraction. taken from <u>http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/mulslid.html#c3</u>

