CHEMISTRY 448/548 Winter 2009

Assignment \#3 (55 pts)
Due Feb. 6th

SHOW WORKING FOR FULL CREDIT AND ALL WORK MUST BE NEAT AND READABLE OR YOU WILL LOSE POINTS !

Be careful of SF's particularly in spreadsheet o/p

1. (15 pts) Below is sketched an approximate potential energy curve for the dissociative adsorption of a diatomic molecule on a metal.

(a) Does this diagram show (i) physisorption, (ii) activated chemisorption or (iii) non-activated chemisorption? (1 pt)

Ans: (ii) activated chemisorption
(b) What are the bond lengths in the precursor and chemisorbed states? (2 pts)

Ans: precursor $=340 \mathrm{pm}$, chemisorbed $=190 \mathrm{pm}$
(c) What is the enthalpy of adsorption into the precursor and chemisorption states. (4 pts)

Ans: precursor $=-11 \mathrm{~kJ} / \mathrm{mol}$, chemisorbed $=-110 \mathrm{~kJ} / \mathrm{mol}$
(d) What is the energy of activation for chemisorption? (2 pts).

Ans: $\Delta H=39 \mathrm{~kJ} / \mathrm{mol}$
(e) What is the enthalpy of desorption as a molecule from the chemisorption state? (2 pts)

Ans: $\Delta H=110+39=150 \mathrm{~kJ} / \mathrm{mol}$
(f) What is the enthalpy of desorption from the precursor state? (1 pts)

Ans: $\Delta H=11 \mathrm{~kJ} / \mathrm{mol}$
(g) The diatomic gas used has a bond energy of $425 \mathrm{~kJ} / \mathrm{mol}$. If the atoms were to desorb without reforming the molecule, what will be the enthalpy of desorption per mole of atoms produced in the gas phase? (3 pts)

Ans:

Per mole of O atoms the $\Delta H_{\text {des }}=535 / 2=238 \mathrm{~kJ} / \mathrm{mol} \mathrm{A}$
2. (20 pts) Some data for the adsorption of carbon monoxide on charcoal at 273 K are given below.

$\mathrm{p}($ torr $)$	100	200	300	400	500	600	700
$\mathrm{~V}(\mathrm{ml})$	10.2	18.6	25.5	31.5	36.9	41.6	46.1

(Assume V has been corrected to 1 atm pressure)
a) Use the associative and dissociative versions of the Langmuir isotherm to find the types of adsorption occurring. Plot on graph paper or spreadsheet/printer. Calculate V_{m} and b (10 pts)

Solution :
The associative Langmuir isotherm can be written as :
$\theta=\frac{V}{V_{m}}=\frac{b P}{1+b P}$ or
$\frac{P}{V}=\frac{1}{b V_{m}}+\frac{1}{V_{m} P}$

Assoc \mathbf{p} (Torr)	V(mL)	P/V
100	10.2	9.80
200	18.6	10.8
300	25.5	11.8
400	31.5	12.7
500	36.9	13.6
600	41.6	14.4
700	46.1	15.2

The dissociative Langmuir isotherm is :
$\frac{\sqrt{P}}{V}=\frac{1}{b V_{m}}+\frac{1}{V_{m} \sqrt{P}}$

Dissoc $\mathbf{p (T o r r)}$	$\mathbf{P}^{\wedge} \mathbf{0 . 5}$	V(mL)	$\mathbf{P}^{\wedge} \mathbf{0 . 5 / \mathbf { V }}$
100	10.0	10.2	0.980
200	14.1	18.6	0.760
300	17.3	25.5	0.679
400	20.0	31.5	0.635
500	22.4	36.9	0.606
600	24.5	41.6	0.589
700	26.5	46.1	0.574

Clearly the associative isotherm is the correct fit. For the associative data:
Slope $=1 / \mathrm{V}_{\mathrm{m}}=1 / 0.009024$
so $\mathrm{V}_{\mathrm{m}}=110.8 \mathrm{~mL}$
intercept $=\left(1 / b V_{m}\right)=8.987$
so $b=1 /(110.8 \times 8.987)=1.004 \times 10^{-3} \operatorname{torr}^{-1}$
b) given that the total surface area of the charcoal is $13.9 \mathrm{~m}^{2}$, calculate the area occupied by each adsorbed molecule (5 pts)
Solution :
The surface area of the charcoal is given by
$\mathrm{SA}\left(\mathrm{m}^{2}\right)=\mathrm{V}_{\mathrm{m}}{ }^{0}(\mathrm{~L}) \times \mathrm{N}_{\mathrm{A}} \times a\left(\mathrm{~m}^{2}\right) / 22.4 \mathrm{~L}$
where a is the area of 1 molecule
so
$a=\mathrm{SA}\left(\mathrm{m}^{2}\right) \times 22.4(\mathrm{~L}) /\left(\mathrm{V}_{\mathrm{m}}{ }^{\mathrm{o}}(\mathrm{L}) \times \mathrm{N}_{\mathrm{A}}\right)$
$=13.9 \mathrm{~m}^{2} \times 22.4 /\left(0.111 \times 6.02 \times 10^{23}\right)$
and $a=4.67 \times 10^{-21} \mathrm{~m}^{2}$ or $0.467 \AA^{2}$
c) what volume of CO would be adsorbed at 273 K when the pressure is 1 atm ? (5 pts)
(Use fitted isotherm)

Solution :
Knowing the parameter for the Langmuir eqn we just plug in the values

$$
\begin{aligned}
V & =\frac{V_{m} b P}{1+b P} \\
& =111 \mathrm{~mL} \times 1.00 \times 10^{-3} \text { torr }^{-1} \times 760 \text { torr } /\left(1+1.00 \times 10^{-3} \text { torr }^{-1} \times 760 \text { torr }\right)
\end{aligned}
$$

or
$V=47.9 \mathrm{~mL}$
3. (20 pts) Below are some data for the adsorption of N_{2} on 1.00 g of TiO_{2} at 75 K .

p (torr)	1.20	14.0	45.8	87.5	127.7	164.4	204.7
$\mathrm{~V}\left(\mathrm{~mm}^{3}\right)$	601	720	822	935	1046	1146	1254

(Assume V corrected to 1 atm and 273 K)
For N_{2} at 75 K , take the vapor pressure $\mathrm{p}_{\mathrm{o}}=570$ torr
a) Rearrange the BET isotherm in the form $\mathrm{z} /\{(1-\mathrm{z}) \mathrm{V}\}=\ldots$. . where $\mathrm{z}=\left(\mathrm{p} / \mathrm{p}_{\mathrm{o}}\right)$. Find V_{m} and c by a suitable plot on graph paper or spreadsheet/printer. (10 pts)
Solution :
The BET isotherm can be written :
$\frac{P}{V\left(P_{0}-P\right)}=\frac{1}{V_{m} c}+\frac{(c-1) P}{V_{m} c P_{0}}$
Setting $z=\left(\frac{P}{P_{0}}\right), \quad \frac{P}{V(1-z)}=\frac{1}{V_{m} c}+\frac{(c-1) z}{V_{m} c}$
So plotting the LHS vs. z gives
intercept $=\frac{1}{V_{m} c}$ and \quad slope $=\frac{(c-1)}{V_{m} c}=\frac{1}{V_{m}}-\frac{1}{V_{m} c}=\frac{1}{V_{m}}-$ intercept
so $\quad V_{\mathrm{m}}=1 /($ slope + intercept $)$

Po $=$ \mathbf{p} (Torr)	\mathbf{V} (mm^3)	$\mathbf{z}=\mathbf{P} / \mathbf{P 0}$	$\mathbf{z} /(\mathbf{1 - z) \mathbf { V }}$
1.2	601	$2.105 \mathrm{E}-03$	$3.510 \mathrm{E}-06$
14	720	$2.456 \mathrm{E}-02$	$3.497 \mathrm{E}-05$
45.8	822	$8.035 \mathrm{E}-02$	$1.063 \mathrm{E}-04$
87.5	935	$1.535 \mathrm{E}-01$	$1.940 \mathrm{E}-04$
127.7	1046	$2.240 \mathrm{E}-01$	$2.760 \mathrm{E}-04$
164.4	1146	$2.884 \mathrm{E}-01$	$3.537 \mathrm{E}-04$
204.7	1254	$3.591 \mathrm{E}-01$	$4.469 \mathrm{E}-04$

Notice the poor SFs in the trend line, so let's do a full regression. The results are:

Regression Statistics	
Multiple R	0.999829
R Square	0.999658
Adjusted R Square	0.99959
Standard Error	$3.36 \mathrm{E}-06$
Observations	7

ANOVA

	$d f$		$S S$	$M S$	F	Significance F
Regression	1	$1.65 \mathrm{E}-07$	$1.65 \mathrm{E}-07$	14633.14	$7.32 \mathrm{E}-10$	
Residual	5	$5.63 \mathrm{E}-11$	$1.13 \mathrm{E}-11$			
Total	6	$1.65 \mathrm{E}-07$				

	CoefficientsStandard Error							t Stat	P-value	Lower 95\%
Intercept	$4.06 \mathrm{E}-06$	$2.07 \mathrm{E}-06$	1.95772	0.107601	$-1.3 \mathrm{E}-06$					
X Variable 1	0.001225	$1.01 \mathrm{E}-05$	120.9675	$7.32 \mathrm{E}-10$	0.001199					

From the plot we find
$\mathrm{V}_{\mathrm{m}}=1 /($ slope + intercept $)=1 /\left(4.06 \times 10^{-6}+0.001225\right) \mathrm{mm}^{3}=814 \mathrm{~mm}^{3}$
and
$\mathrm{c}=1 /\left(\right.$ intercept $\left.\times \mathrm{V}_{\mathrm{m}}\right)=1 /\left(4.06 \times 10^{-6} \times 814\right)=303 \mathrm{~mm}^{-3}$
b) Assuming that the cross-sectional area of an N_{2} molecule in the liquid phase is $0.160 \mathrm{~nm}^{2}$, estimate the surface area of the sample in $\mathrm{m}^{2} / \mathrm{g}$. (5 pts)

Solution :

The surface area of the catalyst SA is given by
SA = \# surface sites \times area per adsorbed molecule

$$
=\left[\mathrm{V}_{\mathrm{m}}{ }^{\mathrm{o}}(\mathrm{~L}) \times \mathrm{N}_{\mathrm{A}} / 22.4(\mathrm{~L})\right] \times a\left(\mathrm{~m}^{2}\right)
$$

and

$$
\begin{aligned}
\mathrm{SA} & =\left(0.814 \times 10^{-3} \mathrm{~L} \times 6.02 \times 10^{23} / 22.4 \mathrm{~L}\right) \times 0.160 \times 10^{-18} \mathrm{~m}^{2} \\
& =3.50 \mathrm{~m}^{2}
\end{aligned}
$$

