View Online / Journal Homepage / Table of Contents for this issue

The Pentafluorophenylxenon(II) Cation: $[C_6F_5Xe]^+$; The First Stable System with a Xenon–Carbon Bond

Hermann J. Frohn* and Stephanus Jakobs

Fachgebiet Anorganische Chemie, Universität - GH - Duisburg, Lotharstr. 1, D-4100 Duisburg 1, F.R.G.

Pentafluorophenylxenon(II) pentafluorophenyltrifluoroborate, $[C_6F_5Xe]^+$ $[C_6F_5BF_3]^-$, can be prepared analogously to pentafluorophenylhalogen(III) and (v) fluorides, $C_6F_5HalF_2$ and $C_6F_5HalF_4$ (with Hal = Br or I), by nucleophilic displacement of fluorine in XeF₂ using B(C_6F_5)₃ as an aryl-transfer reagent; the resulting colourless solid with a stable xenon–carbon bond is characterised in solution by ¹²⁹Xe and ¹⁹F n.m.r. and chemically as an electrophilic transfer reagent for pentafluorophenyl groups.

Since the discovery of the first xenon compound by Bartlett in 1962¹ a large number of xenon compounds with bonds to fluorine, oxygen, and nitrogen have been realised.^{2.3} Until today however, there has been no report of a well characterised stable xenon–carbon bond system⁴ apart from Lagow's report of Xe(CF₃)₂ in 1979.⁵

At a recent Symposium we reported⁶ the first synthesis of $[C_6F_5Xe]^+$ $[C_6F_5BF_3]^-$ whereby an excess of XeF₂ was reacted with B(C₆F₅)₃ in CH₂Cl₂ at -30 °C in an FEP-reactor. After separation and purification, $[C_6F_5Xe]^+$ $[C_6F_5BF_3]^-$ was isolated as a colourless solid (yield ~40%) and identified by ¹⁹F and ¹²⁹Xe n.m.r. spectroscopy in MeCN solution.

Figure 1. (a–c) ¹⁹F n.m.r. spectrum of $[C_6F_5Xe]^+$ $[C_6F_5BF_3]^-$ in MeCN at -30 °C (5 mm tubes with FEP inliner, recorded on a Bruker WP 80 SY spectrometer at 75.39 MHz); shifts are with respect to CCl₃F. In (a) resonances of the $[C_6F_5Xe]^+$ cation are labelled by asterisks (+ denotes $[BF_4]^-$ impurity). (b) and (c) represent *ortho-* and *meta-*fluorine resonance. Centres of ¹²⁹Xe satellites are marked by ×.

Table 1. ¹⁹F n.m.r. chemical shifts^a $\delta/p.p.m.$ of ionic C₆F₅-species.

Species	δ(<i>o</i> -F)	δ(<i>p</i> -F)	δ(<i>m</i> -F)	δ(E-F)
$[C_6F_5Xe]^+$	-125.13	-141.55	-154.34	
$[(C_6F_5)_2Br]^{+b}$	-128.91	-139.12	-154.89	-150.58
$[(C_6F_5)_2I]^{+b}$	-119.93	-139.92	-155.91	-149.25
$[C_6F_5BF_3]^-$	-135.29	-160.45	-164.87	-132.19

^a Recorded in MeCN at -30 °C (5 mm tubes with FEP inliners) using a Bruker WP 80 SY spectrometer (75.39 MHz). ^b Measured as BF₄⁻ salt. (Shifts are with respect to CCl₃F. Negative values describe upfield shifts.)

Figure 2. ¹²⁹Xe n.m.r. spectrum of $[C_6F_5Xe]^+$ $[C_6F_5BF_3]^-$ in MeCN at -30 °C (10 mm tubes with FEP inliner, recorded on a Bruker WM 300 spectrometer at 83.03 MHz); shift with respect to Xe⁰.

The ¹⁹F n.m.r. spectrum shows two C₆F₅ groups of equal intensity with typical patterns for *ortho-*, *meta-* and *para*fluorine positions (Figure 1). Resonances at -125.13 (*o-*, rel. int. 2), -154.34 (*m-*, rel. int. 2), and -141.55 p.p.m. (*p-*, rel. int. 1) are assigned to the [C₆F₅Xe]⁺ cation. An argument in favour of the Xe-C₆F₅ bond is the n.m.r. pattern of the *ortho*and *meta-*fluorine atoms which shows ¹²⁹Xe-satellites corresponding to the natural abundance of ¹²⁹Xe (*I* = 1/2) of 26%. Spin-spin coupling constants $|^{3}J(^{129}Xe^{-19}F)|$ of 67.8 ± 1.1 Hz and $|^{4}J(^{129}Xe^{-19}F)|$ of 19.5 ± 1.1 Hz are measured [Figure 1(b) and 1(c)]. There are two factors in the n.m.r. which are significant to the cationic species [C₆F₅Xe]⁺. Firstly, the low-field *ortho-*fluorine position is typical for C₆F₅-groups bonded to low co-ordinated heavy elements like Zn, Cd, Hg, or I. Secondly the low field *para*-fluorine position is found in the same region as in the cationic species $[(C_6F_5)_2I]^{+7}$ and $[(C_6F_5)_2Br]^{+8}$ (Table 1) and can be interpreted in terms of an aryl back-bond to xenon(II). The ¹²⁹Xe n.m.r. (Figure 2) consists of a triplet at 1422 p.p.m. downfield from Xe⁰ (or 1950 p.p.m. upfield from XeF₂) caused by the $|^{3}J(^{129}Xe^{-19}F)|$ spin-spin coupling of 69.1 ± 2.7 Hz which is in agreement with the ¹⁹F n.m.r. results (Figure 1). The half width ($w_{\frac{1}{2}}$) of 22 Hz does not allow the detection of $^{4}J(^{129}Xe^{-19}F)$ in the ¹²⁹Xe spectrum.

The $[C_6F_5BF_3]^-$ anion is characterised by ¹⁹F n.m.r. resonances at -135.29 (*o*-, rel. int. 2), -164.87 (*m*-, rel. int. 2), -160.45 (*p*-, rel. int. 1), and -132.19 p.p.m. ($[RBF_3]^-$, rel. int. 3).

We also report for the first time some of the chemical properties of $[C_6F_5Xe]^+$ $[C_6F_5BF_3]^-$, concerning its thermal stability in solution, reactions with nucleophiles, and hydrolysis.

In MeCN solution at 35 °C, $[C_6F_5Xe]^+ [C_6F_5BF_3]^-$ shows a half-life of >2 h. Decomposition products are $(C_6F_5)_2$ and C_6HF_5 , formed by radical attack on the solvent. No decomposition occurred during storage at -60 °C. $[C_6F_5Xe]^+$ reacts with halide ions (Hal⁻ = I⁻ and Br⁻) in MeCN at -30 °C with formation of C_6F_5Hal [equation (1)]. At -30 °C, no electrophilic attack of $[C_6F_5Xe]^+$ on soft basic centres in C_6F_5Hal or $(p-CF_3C_6H_4)_3P$ according to equations (2) or (3) can be observed. In MeCN solution, hydrolysis with formation of C_6HF_5 occurs spontaneously when water is present.

$$[C_{6}F_{5}Xe]^{+} [C_{6}F_{5}BF_{3}]^{-} + [R_{4}N]^{+} Hal^{-} \longrightarrow C_{6}F_{5}Hal + Xe^{0} + [R_{4}N]^{+} [C_{6}F_{5}BF_{3}]^{-}$$
(1)

$$[C_{6}F_{5}Xe]^{+} [C_{6}F_{5}BF_{3}]^{-} + C_{6}F_{5}Hal \longrightarrow [(C_{6}F_{5})_{2}Hal]^{+} [C_{6}F_{5}BF_{3}]^{-} + Xe^{0}$$
(2)

$$[C_{6}F_{5}Xe]^{+} [C_{6}F_{5}BF_{3}]^{-} + (p-CF_{3}C_{6}H_{4})_{3}P \longrightarrow [C_{6}F_{5}(p-CF_{3}C_{6}H_{4})_{3}P]^{+} [C_{6}F_{5}BF_{3}]^{-} + Xe^{0}$$
(3)

We are continuing our preparative work on aryl-xenon compounds and their reaction chemistry, as well as structural investigations on this new class of compounds.

We gratefully acknowledge Fonds der Chemischen Industrie for their financial support.

Received, 19th September 1988; Com. 8/03555E

References

- 1 N. Bartlett, Proc. Chem. Soc. (London), 1962, 218.
- 2 K. Seppelt and D. Lentz, Prog. Inorg. Chem., 1982, 29, 167.
- 3 J. H. Holloway, J. Fluorine Chem., 1986, 33, 149.
- 4 R. Dagani, Chem. Eng. News., 1988, 66, (14), 16.
- 5 L. J. Turbini, R. E. Aikman, and R. J. Lagow, J. Am. Chem. Soc., 1979, 101, 5833.
- 6 W. Breuer, H. J. Frohn, M. Giesen, and St. Jakobs, 12th Int. Symp. on Fluorine Chem., Santa Cruz, 1988, Poster 213 'Aryl-Fluorine-Metathesis Reactions on Halogen Fluorides and Xenon Difluoride: a Comparison of Preparative Results.' At the same symposium D. Naumann and W. Tyrra reported the observation of [C₆F₅Xe]⁺ [(C₆F₅)₃BF]⁻ in solution.
- 7 H. J. Frohn, J. Helber, and A. Richter, Chem. Ztg., 1983, 107, 169.
- 8 H. J. Frohn and M. Giesen, J. Fluorine Chem., 1987, 35, 112.