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INTRODUCTION 

 
In modern science, regression analysis is a necessary part of virtually almost any data 

reduction process. Popular spreadsheet programs, such as Quattro Pro, Microsoft Excel, 

and  Lotus 1-2-3 provide comprehensive statistical program packages, which include a 

regression tool among many others. 

 

Usually, the regression module is explained clearly enough in on-line help and spreadsheet 

documentation (i.e. items in the regression input dialog box). However, the description of 

the output is minimal and is often a mystery for the user who is unfamiliar with certain  

statistical  concepts. 

 

The objective of this short handout is to give a more detailed description of the regression 

tool and to touch upon related statistical topics in a hopefully readable manner. It is 

designed for science  undergraduate and graduate students inexperienced in statistical 

matters. The regression output in Microsoft  Excel is pretty standard and is chosen as a 

basis for illustrations and examples ( Quattro Pro and Lotus 1-2-3 use an almost identical 

format). 

 

 

 

CLASSIFICATION  OF REGRESSION MODELS 

 

In a regression analysis we study the relationship, called the regression function, between 

one variable y, called  the dependent variable, and several  others xi, called the 

independent variables.  Regression function  also involves a set of  unknown parameters 

bi. If a regression function is linear in the parameters (but not necessarily in  the 

independent variables ! ) we term it a linear regression model. Otherwise, the model is 

called non-linear. Linear regression models with more than one independent variable  are 

referred to as multiple linear models, as opposed to  simple linear models  with one 

independent variable.  
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The following notation is used in this work: 

 

y                             - dependent variable (predicted by  a regression model) 

y*    - dependent variable (experimental value) 

p     - number of independent variables (number of coefficients) 

xi  (i=1,2, …p)   - ith independent variable from total set of p variables 

bi (i=1,2, …p)   - ith coefficient corresponding to  xi 

b0    - intercept (or constant) 

k=p+1    - total number of parameters including intercept (constant) 

n           - number of observations ( experimental data points) 

i =1,2 … p   - independent variables’ index 

j=1,2, … n   - data points’ index 

 

Now let us illustrate the classification of regression models with mathematical expressions: 

 

Multiple linear model 

 

General formula:  

 

                              y = b0 + b1x1 + b2x2 + … bpxp                                       (1)                                             

                                              or 

                              y = b0 + i bixi     i=1,2,… p      (1a) 

 

 

Polynomial (model is linear in parameters , but not in independent variables): 

 

       y = b0 + b1x + b2x
2 

+ b3x
3  

… bpx
p
, which  is just a specific case of (1) 

 

    with x1 = x, x2 = x
2
, x3 = x

3
 …..xp = x

p
 

 

 

Simple linear model 

   

      y = b0 + b1x1 

         

It is obvious that simple linear model is just specific case of multiple one with k=2 (p=1) 
 

 

Non-linear model 

 

                            y = A(1-e
-Bx

),  

                            where A, B are  parameters 

 

In further discussion we restrict ourselves to multiple linear regression analysis. 
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MAIN  OBJECTIVES  OF  MULTIPLE  LINEAR  REGRESSION   

ANALYSIS 

 
Our primary goal is to  determine the best set of parameters bi, such that the model predicts 

experimental values of the dependent variable as accurately as possible (i.e. calculated 

values  yj should be close  to experimental values  yj* ). 

 

We also wish to judge whether our model itself is adequate to fit the observed experimental 

data (i.e. whether we chose the correct mathematical form of it). 

 

We need to check whether all terms in our model are significant (i.e. is the improvement in 

“goodness” of fit due to the addition of a certain term to the model bigger than the noise in 

experimental data). 

 

 

 

DESCRIPTION   OF  REGRESSION  INPUT AND OUTPUT  

 

The standard regression output of spreadsheet programs provides information to reach the 

objectives raised in the previous section. Now we explain how to do that and touch upon 

related statistical terms and definitions. 

 

The following numerical example will be used throughout the handout to illustrate the 

discussion: 

 

 

Table 1. Original experimental data 

Data point # y*  z 

j   

1 20.6947 2.5 

2 28.5623 3.1 

3 157.0020 8.1 

4 334.6340 12.2 

5 406.5697 13.5 

6 696.0331 17.9 

7 945.1385 21.0 

 

 

 

We choose y* to be the dependent experimental observable  and z to be the independent 

one. Suppose we have, say, theoretical reasons to believe that relationship between two is: 

    

y* = b0 + b1*z + b2*z
2 

+ b3*z
3 
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We can rewrite this expression in form (1): 

 

   y = b0 + b1x1 + b2x2 + b3x3, where   (1b) 

   x1 = z, x2 = z
2
 and x2 = z

3 

 

 

In the next step we prepare the spreadsheet input table for regression analysis: 

  

Table 2. Regression input 

Data point # Dependent var. Independent variables 

j y*  x1(=z) x2(=z
2
) x3(=z

3
) 

1 20.6947 2.5 6.25 15.63 

2 28.5623 3.1 9.61 29.79 

3 157.0020 8.1 65.61 531.44 

4 334.6340 12.2 148.84 1815.85 

5 406.5697 13.5 182.25 2460.38 

6 696.0331 17.9 320.41 5735.34 

7 945.1385 21.0 441.00 9261.00 

 

In order to perform a regression analysis we choose from the Microsoft Excel menu*: 

 

  Tools         Data analysis           Regression 

 
Note that data analysis tool should  have been previously  added to Microsoft Excel during the program 

setup  (Tools – Add-Ins – Analysis ToolPak). 

 

The pop-up input dialog box is shown on Fig.1. Elements of this box are described in on-

line help. Most of them become clear in the course of our discussion as well. 

 

The “Input Y range” refers to the spreadsheet cells containing the independent variable y*  

and the “Input X range” to those containing independent variables x ( in our example x = 

x1, x2, x3)  (see Table 2). If we do not want to force our model through the origin we leave 

the “Constant is Zero” box unchecked. The meaning of  “Confidence level” entry will 

become clear later. The block “Output options” allows one to choose the content and 

locations of the regression output. The minimal output has two parts “Regression 

Statistics” and “ANOVA” (ANalysis Of  VAriance). Checking the appropriate boxes in 

subblocks “Residuals” and “Normal Probability”  will expand the default output 

information. We omit from our discussion description of “Normal Probability” output. 

Now we are ready to proceed with  the discussion of  the regression output. 

 

 

*  - In Quattro Pro the sequence is Tools - Numeric Tools - Analysis Tools - Advanced Regression. In the  

        last step instead of  “Advanced Regression”, one can choose “Regression” from the menu. In this case  

        the simplified  regression output will be obtained. 
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Fig. 1. Regression input dialog box 

 
 

 

 

 

Residual output 

 

Example 

 

In Microsoft Excel the residual output has the following format: 

 

Table3. Residual output* 

Observation 

(j) 

Predicted Y 

(yj) 

Residuals 

( r ) 

Standard 

Residuals (r’) 

1 20.4424 0.2523 0.3351 

2 28.9772 -0.4149 -0.5511 

3 156.3982 0.6038 0.8020 

4 335.5517 -0.9178 -1.2189 

5 406.3355 0.2342 0.3111 

6 695.6173 0.4159 0.5524 

7 945.3121 -0.1736 -0.2305 

* - Corresponding notation used in this handout is given in parenthesis  

 

Residual (or error, or deviation) is the difference between the observed value y* of  the 

dependent variable for the jth experimental data point (x1j, x2j, …, xpj, yj*) and the 
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corresponding value yj given by the regression function yj = b0 + b1x1j + b2x2j + … bpxpj  (yj 

= b0 + b1x1j + b2x2j + b3x3j in our example): 

 

rj = yj* - yj       (2) 

 

Parameters b (b0, b1, b2, … bp) are part of the  ANOVA output  (discussed later). 

 

If there is an obvious correlation between the residuals and the independent variable x (say, 

residuals systematically increase with increasing x), it means that the chosen model is not 

adequate to fit the experiment (e.g. we may need to add an extra term x4=z
4
 to our model 

(1b)). A plot of residuals is very helpful in detecting such a correlation. This plot will be 

included in the regression output if the box “Residual Plots” was checked in the regression 

input dialog window (Fig. 1). 

 

 Example 
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However, the fact that the residuals look random and that there is no obvious correlation 

with the variable x does not  necessarily mean by itself that the model is adequate. More 

tests are needed.  

  

Standard  ( or standardized ) residual   is a residual scaled with respect to the standard 

error (deviation) Sy in a dependent variable: 

 

   rj’ = rj / Sy      (2a) 

 

The quantity Sy is part of the “Regression statistics”  output (discussed later). Standardized 

residuals  are used for some statistical tests, which are not usually needed for models in 

physical sciences. 
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ANOVA  output 

 

 

There are two tables in ANOVA (Analysis of Variance).  

 

Example  

 

Table 4. ANOVA output (part I)* 

 df SS MS F Significance F 

Regression 3 (dfR) 723630.06 (SSR) 241210.02 (MSR) 425507.02 (FR) 6.12E-09 (PR) 

Residual (error) 3 (dfE) 1.70 (SSE) 0.57 (MSE)   

Total 6 (dfT) 723631.76 (SST) N/A (MST)   

 

      

Table 4a. ANOVA output (part II)* 

 Coefficients 

(bi) 

Standard 

Error (se (bi)) 

t Stat 

(ti) 

P-value 

(Pi) 

Lower 95% 

(bL,(1-Pi)) 

Upper 95% 

(bU,(1-Pi)) 

Intercept (b0) 0.52292226 1.77984111 0.293802778 0.7881 -5.1413318 6.1871763 

X Variable 1 (x1) 2.91437225 0.73039587 3.990126957 0.0282 0.58992443 5.2388201 

X Variable 2 (x2) 2.02376459 0.07318737 27.65182747 0.0001 1.79084949 2.2566797 

X Variable 3 (x3) -0.0009602 0.00206174 -0.46574477 0.6731 -0.0075216 0.0056011 

 

* - Corresponding notation used in this handout is given in parenthesis; N/A means “not available” in 

Microsoft Excel regression output. 

 

 

Coefficients. 

The regression program determines the best set of parameters b (b0, b1, b2, … bp)  in  the 

model yj=b0 +b1x1j+b2x2j+… bpxpj by minimizing  the error sum of squares  SSE (discussed 

later). Coefficients are listed in the second table of ANOVA (see Table 4a). These 

coefficients allow the program to calculate predicted values of the dependent variable y (y1, 

y2, … yn), which were used above in formula (2) and are part of Residual output ( Table 3). 

 

 

Sum of squares.  

In general, the  sum of squares of some arbitrary variable q is determined as: 

 

   SSq = j 
n
(qj  - qavg)

2
, where    (3) 

 

   qj       - jth observation out of n total observations of quantity q 

   qavg - average value of q in n observations: qavg=j
n
 qj)/n 
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In the ANOVA regression output one will find three types of sum of squares (see Table 4):

  

1). Total sum of squares  SST : 

 

        SST =j
n
(yj* - y*avg)

2
, where    (3a) 

   y*avg =j
n
 yj*)/n 

  

It is obvious that SST is the sum of squares of deviations of the experimental values of 

dependent variable y* from its average value. SST could be interpreted as the sum of 

deviations of  y* from the simplest possible model (y is constant and does not depend on 

any variable x):  

  

y = b0,       with b0 = y*avg     (4) 

 

SST has two contributors: residual (error) sum of squares (SSE ) and regression sum of 

squares(SSR): 

 

   SST = SSE + SSR     (5) 

 

2). Residual  (or error) sum of squares  SSE : 

 

   SSE = j
n
 (rj - ravg)

2
     (6) 

 

Since in the underlying  theory  the expected value of residuals ravg is assumed to be zero, 

expression (6) simplifies to: 

 

   SSE = j
n
 (rj)

2   
   (6a) 

    

The significance of this quantity is that by the minimization of SSE the spreadsheet 

regression tool determines the best set of parameters  b= b0, b1, b2, …, bp for a given 

regression model. SSE could be also viewed as the due-to-random-scattering-of -y*-about-

predicted-line contributor to the total sum of squares SST. This is the reason for calling the 

quantity “due to error  (residual) sum of squares”. 

 

3). Regression sum of squares SSR: 

 

   SSR = j
n
 (yj - y*avg)

2
     (7) 

 

SSR is the sum of squares of deviations of  the predicted-by-regression-model values of  

dependent variable y from its average experimental value y*avg. It accounts for addition  of 

p variables (x1, x2, …, xp) to the simplest possible model (4) (variable y is just a constant 

and does not depend on variables x), i.e.  y = b0  vs.  y = b0 + b1x1 + b2x2 + … + bpxp. Since 

this is  a transformation  from  the  “non-regression model” (4)  to the true regression 

model (1),  SSR is called the “due to regression sum of squares”.  
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The definition of SSR in the form (7) is not always given in the literature. One can find 

different expressions in books on statistics
 
 [1, 2] : 

 

   SSR = i
p 

bi j
n
 (xi j - xavg) yj,  where   (7a) 

 xavg = j
n
 xj*)/n 

 

  or 

    

   SSR = i
p 

bi j
n
 xi j yj* - (j

n
 yj*)

2 
/n   (7b) 

 

Relationships (7a-b) give the same numerical result, however, it is difficult to see the 

physical meaning  of  SSR from them. 

 

 

Mean square (variance) and degrees of freedom 

The general expression for the mean square of an arbitrary quantity q is: 

 

   MSq = SSq / df      (8) 

 

SSq is defined by (3) and  df is the number of degrees of freedom associated with quantity 

SSq.  MS is also often referred to as the variance. The number of degrees of freedom could 

be viewed as the difference between the number of observations n and the number of 

constraints (fixed parameters associated with the corresponding sum of squares SSq).  

 

  

1). Total mean  square MST  (total variance): 

 

   MST = SST/(n - 1)     (9) 

 

 

SST is associated with the model (4), which has only one constraint (parameter b0), 

therefore the number of degrees of freedom in this case is: 

 

   dfT = n - 1      (10) 

 

2). Residual (error)  mean square MSE (error variance): 

 

   MSE = SSE / (n - k)     (11) 

 

   

SSE is associated with the random error around the regression model (1), which has k=p+1 

parameters (one per each variable out of p variables total plus intercept). It means there are 

k constraints and the number of degrees of  freedom is : 

 

   dfE = n - k      (12) 
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3). Regression  mean square MSR (regression variance): 

 

   MSR = SSR /(k - 1)     (13)  

     

The number of degrees of freedom in this case can be viewed as the difference between the 

total number of degrees  of  freedom dfT  (10) and the number of degrees of   freedom for 

residuals dfE (12) : 

 

   dfR = dfT - dfE = (n - 1) - (n - k) 

 

   dfR = k - 1 = p      (14) 

 

 

Tests of significance and F-numbers  

The F-number is the quantity which can be used to test for the statistical difference between 

two variances. For example, if we have two random variables q and v, the corresponding   

F- number is: 

 

   Fqv = MSq / MSv     (15) 

 

The variances MSq and MSv are defined by an expression of type (8). In order to tell 

whether two variances are statistically different, we determine the corresponding 

probability   P   from F-distribution function: 

 

   P=P(Fqv, dfq, dfv)     (16) 

    

The quantities dfq, dfv - degrees of freedom for numerator and denominator - are 

parameters of this function. Tabulated numerical values of P  for the F-distribution can be 

found in various texts on statistics or simply  determined in a spreadsheet directly by using 

the corresponding statistical function (e.g. in Microsoft Excel one would use FDIST(Fqv, 

dfq, dfv) to return the numerical value of  P). An interested reader can find the  analytical 

form of  P=P(Fqv, dfq, dfv) in the literature (e.g. [1, p.383]). 

 

The probability P given by (16) is a probability that  the variances MSq  and MSv are 

statistically indistinguishable. On the other hand, 1-P is the probability that they are 

different and is often called confidence level.  Conventionally, a reasonable confidence 

level is 0.95 or higher. If it turns out that  1-P <  0.95, we say that MSq  and MSv are 

statistically the same. If   1-P > 0.95, we say that at least with the 0.95 (or 95%) confidence 

MSq  and MSv are different. The higher the confidence level, the more reliable our 

conclusion. The procedure just described is called the F-test. 

 

There are several F-tests related to regression analysis. We will discuss the three most 

common ones. They deal with significance of parameters in the regression model . The first 
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and the last of them is performed by spreadsheet regression tool automatically, whereas the 

second one is  not. 

 

 

1).  Significance test of  all coefficients in the regression model 

 

In this case we ask ourselves: ”With what level of confidence can we state that AT LEAST 

ONE of  the coefficients  b  (b1, b2, … bp)  in the regression model is significantly different 

from zero?”.  The first step is to calculate the F-number for the whole regression (part of 

the regression output (see Table 4)): 

 

   FR = MSR / MSE     (17) 

   

The second step is to determine the numerical value of the corresponding probability P R 

(also part of the regression output ( see Table 4)) :  

    

   P R = FDIST(FR, dfR, dfE)    (18)   

 

Taking into account expressions (12) and (14) we obtain: 

 

   P R = FDIST(FR, k - 1, n - k)    (18a) 

 

Finally we can determine the confidence level 1 - PR. At this level of confidence, the 

variance “due to regression” MSR  is statistically different from the variance “due to error” 

MSE . In its turn it means that the addition of  p variables (x1, x2, …, xp) to the simplest 

model (4) (dependent variable y is just a constant) is a statistically significant improvement 

of the fit. Thus, at the confidence level  not less than 1- P R we can say: “At least ONE of 

coefficients  in the model is significant”. FR could be also used to compare two models 

describing the same experimental data: the higher FR the more adequate the corresponding 

model.  

 

Example 

 

In our illustrative exercise  we have PR= 6.12E-09 (Table 4), the corresponding level of 

confidence 1 - PR = 0.9999. Therefore with the confidence close to 100% we can say that at 

least one of coefficients b1, b2 and b3 is significant for the model y = b0 + b1x1 + b2x2 + 

b3x3, where x1=z, x2= z
2
 and x3= z

3
.
 

NOTE:  From this test, however, we can not  be sure that ALL coefficients b1 ,b2 and b3 

are non-zero . 

 

If  1- P R is not big enough (usually less than 0.95), we conclude that  ALL the coefficients 

in the regression model are zero (in other words, the hypothesis that  “the variable y is just 

a constant” is better than “it is function of variables x (x1, x2, …, xp) ”). 
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2). Significance test of subset of coefficients in the regression model  

      

Now we  want to decide “With what level of confidence can we be sure that at least ONE 

of the coefficients in a selected subset of all the coefficients is significant?”. Let us test a 

subset of the last m coefficients in the model with a total of p coefficients (b1, b2, … bp).  

Here we need to consider two models: 

 

 

   y = b0 + b1x1 + b2x2 + … bpxp           (unrestricted) (19) 

 

    and 

 

   y = b’0 + b’1x1 + b’2x +… b’p-mxp-m        (restricted) (20) 

 

 

These models are called unrestricted  (19) and restricted  (20) respectively. We need to 

perform two separate  least square regression analyses for each model. 

 

From the regression output (see Table 4) for each model we obtain the corresponding error 

sum of squares SSE and SS’E as well as variance MSE  for the unrestricted model. The next 

step is to calculate the F-number for  testing a subset of  m variables “by hand” (it is not 

part of Microsoft Excel ANOVA for an obvious reason, i.e. you must decide how many 

variables to include in the subset): 

 

 

   Fm = {( SS’E - SSE) / m} / MSE    (21) 

 

 

Fm could be viewed as an indicator of whether the reduction in the error variance due to the 

addition of the subset of m variables to the restricted model (20) (( SS’E - SSE) / m ) is 

statistically significant with respect to the overall error variance MSE for the unrestricted 

model (19). It is equivalent to testing the hypothesis that  at least one of coefficients in the 

subset is not zero. In the final step,  we determine probability Pm (also “by hand”): 

   

  

   P m = FDIST(Fm, m, n - k)    (22) 

   

  

 

At the confidence level 1- P m  at least ONE of the coefficients in the subset of  m  is 

significant. If  1- P m is not big enough (less than 0.95) we state that ALL  m  coefficients 

in the subset are insignificant. 
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Example 

 

The regression output for the unrestricted model (y = b0 + b1x1 + b2x2 + b3x3, where x1=z, 

x2= z
2
 and x3= z

3
) is presented in Table 4.

 
Say, we want to test whether the quadratic and 

the cubic terms are significant. In this case the restricted model is: 

 

   y = b0 + b1x1,                (restricted model)  (23) 

where x1 = z 

 

The subset of parameters consists of two parameter and m=2. By analogy with the input 

table for the unrestricted model (Table 2) we prepare one for the restricted model: 

 

Table 5. Regression input for restricted model 

Data point # Dependent var. Independent var. 

j y*  x1(=z) 

1 20.6947 2.5 

2 28.5623 3.1 

3 157.0020 8.1 

4 334.6340 12.2 

5 406.5697 13.5 

6 696.0331 17.9 

7 945.1385 21.0 

 

 

We perform an additional regression using this input table and as part of ANOVA obtain: 

 

Table 6. Regression ANOVA output for the restricted model  

 df’ SS’ MS’ F’ Significance 

F’ 

Regression 1 689216 689216 100 1.70-4 

Residual (error) 5 34415.70 6883   

Total 6 723632    

 

From  Table 4 and Table 6 we have: 

 

   SSE = 1.70  (error sum of squares; unrestricted model) 

   MSE = 0.57             (error mean square; unrestricted model) 

   dfE =(n - k)= 3  (degrees of freedom; unrestricted model) 

   SS’E = 34415.70          (error sum of squares; restricted model)  
 

Now we are able to calculate Fm=2: 

 

   Fm=2 = {(34415.70-1.70)/ 2} / 0.57 

   Fm=2 = 30187.72 
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Using the Microsoft Excel function for the F-distribution we determine the probability 

Pm=2: 

 

   Pm=2 = FDIST(30187.72, 2, 3)  

   Pm=2 = 3.50E-07 

 

Finally we calculate the level of confidence 1- Pm=2: 

 

1-Pm=1 = 1 - 3.50E-07 

1-Pm=1 = 0.99999  

 

The confidence level is high (more than 99.99 %). We conclude that at least one of the 

parameters  (b2 or b3) in  the subset is non-zero. However, we can not be sure that both 

quadratic and cubic terms are significant.  

 

 

 

3). Significance test of an individual coefficient in the regression model 

 

Here the question to answer is: ”With what confidence level can we state that the ith 

coefficient bi  in the model  is significant?”. The corresponding F-number is: 

 

   Fi = bi
2
 / [se(bi)]

2
     (24) 

    

se(bi) is the standard error in the individual coefficient bi and is part of the ANOVA output 

(see Table 4a). The corresponding probability  

 

   P i = FDIST(Fi, 1, n - k)    (25)  

 

 

leads us to the confidence level 1- P i at which we can state that coefficient bi is significant. 

If this level is lower than desired one we say that coefficient bi is insignificant. Fi  is not 

part of spreadsheet regression output, but might be calculated by hand if needed. 

 

However, there is another statistics for testing individual parameters, which is part of 

ANOVA (see Table 4a): 

           

   ti = bi / se(bi)      (26) 

 

 The ti - number is the square root of Fi (expression (24)). It  has a Student’s distribution 

(see [1, p. 381] for the analytical form of the distribution). The corresponding probability is 

numerically the same as that given by (25). There is a statistical function in Microsoft 

Excel which allows one to determine Pi ( part of ANOVA (see Table 4a)): 

 

   P i= TDIST(ti, n-k, 2)     (27) 
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Parameters of the function (27) are: the number of degrees of freedom df (dfE =n - k) and form of test (TL=2). 

If  TL=1 a result for a  one-tailed distribution is returned; if TL=2 two-tailed distribution result  is returned. 

An interested reader can find more information about the issue in ref. [1] 

 

 

Example  

  

In our illustration P0=0.7881 and P3 = 0.6731 (see Table 4a) corresponds to fairly low 

confidence levels, 1 - P0 = 0.2119 and 1 - P3 = 0.3269. This suggests that parameters b0 and 

b3 are not significant. The confidence levels for b1 and b2 are high (1 - P1 = 1 - 0.0282 = 

0.9718  and 1- P2 = 1 - 0.0001 = 0.9999), which means that they are significant. 

 

In conclusion of  this F-test discussion, it should be noted that in case we remove even one  

insignificant variable from the model, we need to test the model once again, since 

coefficients which were significant in certain cases might become insignificant after 

removal and visa versa. It is a good practice to use a reasonable combination of all three 

tests in order to achieve the most reliable conclusions. 

 

 

 

Confidence interval 

In the previous section we were obtaining confidence levels given F-numbers or  t-

numbers. We can go in an opposite direction: given a desired minimal confidence level 1-P 

(e.g. 0.95) calculate the related F- or t-number. Microsoft Excel provides two statistical 

functions for that purpose: 

 

   F(1-P)=FINV (P, dfq, dfv)    (28) 

 

   t(1-P)=TINV(P, df )     (29) 

 

 

dfq, dfv - degrees of freedom of numerator and denominator, respectively (see (15)) 

df         - degree of freedom associated with a given t-test (varies from test to test) 

 

NOTE: in expression (29) P is  the probability associated with so called “two-   

             tailed”  Student’s distribution. A “one- tailed”  distribution has the different  

probability  The relationship between the two is: 

 

   =P/2       (30) 

 

Values of  F-numbers  and t-numbers for various  probabilities and degrees of freedom 

are tabulated and can be found in any text on statistics  [1,2,3,4] . Usually the “one-tailed” 

Student’s distribution  is presented. 
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Knowing the  t-number for a coefficient bi we can calculate the numerical interval which 

contains the coefficient bi with the desired probability 1-Pi: 

 

 

   bL, (1- Pi)= bi - se(bi)*t(1-Pi)   (lower limit)  (31)  

 

   bU, (1- Pi)= bi + se(bi)*t(1-Pi)   (upper limit)  (31a) 

 

   t(1-Pi)=TINV(Pi, n-k)     (32) 

 

 

The standard errors for individual parameters se(bi) are part of ANOVA (Table 4a). The 

interval [bL, (1- Pi); bU, (1- Pi)]  is called the confidence interval of parameter bi  with the 1-Pi 

confidence level. The upper and lower limits of this interval at a 95% confidence are listed 

in the ANOVA output by default ( Table 4a; columns “Lower 95%” and “Upper 95%”). If 

in addition to this default, the confidence interval at a confidence other than 95% is desired, 

the box “Confidence level” should be checked and the value of the alternative confidence 

entered in the corresponding window of the  Regression input dialog box (see Fig. 1). 

 

 

 

Example 

 

For the unrestricted model (1b), the lower and upper 95% limits for intercept are “-5.1413” 

and “6.1872” respectively (see Table 4a). The fact that with the 95% probability zero falls 

in this interval is consistent with our conclusion of insignificance of b0 made in the course 

of F-testing of individual parameters (see Example at the end of previous section). The 

confidence intervals at the 95% level for b1 and b2 do not include zero. This also agrees 

with the F-test of individual parameters.  

 

 

In fact, analysis whether zero falls in a confidence interval could be viewed as a different 

way to perform the F-test (t-test) of individual parameters  and must not be used as an 

additional proof of conclusions made in such a test. 

 

 

 

Regression statistics output 

 

The information contained in the “Regression statistics” output characterizes the 

“goodness” of the model as a whole. Note that quantities listed in this output can be 

expressed in terms of  the regression F-number FR (Table 4) which we have already used  

for the significance test of  all coefficients. 
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Example 

For our unrestricted model (1b) the output is:  

 

Table 7. Regression statistics output*  

Multiple R 0.99999882 

R Square (R
2
) 0.99999765 

Adjusted R Square (R
2

adj) 0.9999953 

Standard Error (Sy) 0.75291216 

Observations (n) 7 

* - Corresponding notation used in this handout is given in parenthesis 

 

 

 

Standard error (Sy): 

 

   Sy= (MSE)
0.5

      (33)   
 

MSE is an error variance discussed before (see expression (11)). Quantity Sy is an estimate 

of the standard error (deviation) of experimental values of the dependent variable y* with 

respect to those  predicted by the regression model. It is used in statistics for different 

purposes. One of the applications we saw in the discussion of “Residual output” 

(Standardized residuals; see expression (2a)). 

 

 

Coefficient of determination R
2

  (or R Square): 

 

   R
2
=SSR / SST = 1 - SSE/SST    (34) 

 

SSR, SSE and SST are regression, residual (error) and total sum of squares defined by (7), 

(6a) and (3a) respectively. The coefficient of determination is a measure of the regression 

model as whole. The closer R
2 

is
 
to one, the better the model (1) describes the data. In the 

case of a perfect fit R
2
=1.  

 

 

Adjusted coefficient of determination R
2
 (or Adjusted R Square): 

 

   R
2

adj=1- {SSE / (n-k)} / {SST/ (n-1)}   (35) 

 

SSE and SST are the residual (error) and the total sum of squares (see expressions (6a) and 

(3a)). The significance of R
2

adj is basically the same as that of R
2
 (the closer to one the 

better). Strictly speaking R
2

adj should be used as an indicator of an adequacy of the model, 

since it takes in to account not only deviations, but also numbers of degrees of freedom. 
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Multiple correlation coefficient R: 

 

   R = ( SSR / SST)
0.5

     (36) 

 

This quantity is just the square root of coefficient of determination. 

 

Example 

 

The fact that R
2

adj = 0.9999953 in our illustration is fairly close to 1 (see Table 7) suggests 

that overall model  (1b) is adequate to fit the experimental data presented in Table 1. 

However, it does not mean that there are no insignificant parameters in it. 

 

 

 

REGRESSION OUTPUT FORMULA MAP 

 

For references, the following tables present a summary of the formula numbers for 

individual items in the Microsoft Excel Regression Output. Variables in parenthesis, 

introduced and used in this handout, do not appear in the output. 

 

 

Table 8. Formula map of Regression statistics output 

Multiple R (36) 

R Square (R
2
) (34) 

Adjusted R Square (R
2

adj) (35) 

Standard Error (Sy) (33) 

Observations  (n)  

 

 

 

Table 9. Formula map of Residual output 

Observation (j) Predicted Y (yj) Residuals (rj) Standard Residuals(r’j) 

1 (1) (2) (2a) 

2 (1) (2) (2a) 

 

 

Table 10. Formula map of ANOVA output (part I) 

 df SS MS F Significance F  

Regression (dfR) (14) (SSR) (7) (MSR) (13) (FR) (17)  (PR) (18) 

Residual (error) (dfE) (12)  (SSE) (6a)  (MSE) (11)   

Total (dfT) (10)  (SST) (3a)  (MST)* (9)   

 

*- not reported in Microsoft Excel Regression output 
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Table 10a. Formula map of ANOVA output (part II) 

 Coefficients 

(bi) 

Standard 

Error (se(bi)) 

t Stat 

(ti) 

P-value 

(Pi) 

Lower 

95% 

(bL,(1-Pi)) 

Upper 

95% 

(bU,(1-

Pi)) 

Intercept (b0)   (26) (25) (27) (31) (31a) 

X Variable 1 (x1)   (26) (25) (27) (31) (31a) 

X Variable 2 (x2)…   (26) (25) (27) (31) (31a) 
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