Table IV. Compounds for Standard Solutions

Element		Molar Mass	1000 mg/L	0.1 M	Solvent	Comments
		(g/mol)	(g/L)	(g/L)		
Aluminum	Al metal	26.982	1.0000	2.6982	Hot, dil. HCl	b
Antimony	KSbOC ₄ H ₄ O ₆ • ¹ / ₂ H ₂ O	33.392	2.7427	33.392	Water	1
Arsenic	As ₂ O ₂	197.84	2.6406	9.892	dil. HCl	a,c,n
Barium	BaCO ₃	197.35	1.4369	19.735	dil. HCl	
Beryllium	Be metal	9.0122	1.0000	0.9012	HCl	с
Bismuth	Bi ₂ O ₃	465.96	1.1148	23.297	HNO ₃	
Boron	H ₃ BO ₃	61.84	5.7200	6.184	Water	b
Bromine	KBr	119.01	1.4894	11.0901	Water	b
Cadmium	CdO	128.40	1.1423	12.840	HNO ₃	
Calcium	CaCO ₃	100.09	2.4972	10.009	dil. HCl	а
Cerium	$(NH_4)_2Ce(NO_3)_6$	548.23	3.9126	54.823	Water	
Cesium	Cs ₂ SO ₄	361.87	1.3614	18.094	Water	
Chromium	K ₂ Cr ₂ O ₇	294.19	2.8290	14.710	Water	а
Cobalt	Co metal	58.933	1.0000	5.8933	HNO ₃	b
Copper	Cu metal	63.546	1.0000	6.3546	dil. HNO ₃	b
	CuO	79.545	1.2517	7.9545	HCl, hot	b
Dysprosium	Dy ₂ O ₃	373.00	1.1477	18.650	HCl, hot	e
Erbium	Er ₂ O ₂	382.56	1.1435	19.128	HCl, hot	e
Europium	Eu ₂ O ₃	351.92	1.1579	17.596	HCl, hot	e
Fluorine	NaF	41.988	2.2101	4.1988	Water	g
Gadolinium	Gd_2O_3	362.50	1.1526	18.125	HCl, hot	e
Gallium	Ga metal	69.72	1.0000	6.972	HNO ₃ , hot	f
Germanium	GeO ₂	104.60	1.4410	10.460	1 M NaOH, hot	
Gold	Au metal	196.67	1.0000	19.697	Aqua Regia, hot	b
Hafnium	Hf metal	178.49	1.0000	17.849	HF, fusion	i
Holmium	Ho ₂ O ₃	377.86	1.1455	18.893	HCl, hot	e
Indium	In ₂ O ₃	277.64	1.2090	13.882	HCl, hot	
Iodine	KIO ₃	214.00	1.6863	21.400	Water	а
	-					

Table IV. Compounds for Standard Solutions (cont.)

Element		Molar Mass (g/mol)	1000 mg/L (g/L)	0.1 M (g/L)	Solvent	Comment
Iridium		No Suitable Comp				
Iron	Fe metal	55.47	1.0000	5.5847	HCl, hot	b
Lanthanum	La ₂ O ₃	325.82	1.1728	16.291	HCl, hot	e
Lead	$Pb(NO_3)_2$	331.20	1.5985	33.120	Water	b
Lithium	Li ₂ CO ₃	73.890	5.3243	3.6940	HCl	b
Lutetium	Lu ₂ O ₃	397.94	1.1372	19.987	HCl, hot	
Magnesium	MgO	40.31	1.658	4.031	HC1	
Manganese	MnSO ₄ • H ₂ O	169.01	3.0764	16.901	Water	j
Mercury	HgCl ₂	271.50	1.3535	27.150	Water	с
Molybdenum	MoO ₃	143.94	1.5003	14.394	1 M NaOH	
Neodymium	Nd ₂ O ₃	336.48	1.1664	16.824	HC1	с
Nickel	Ni metal	58.71	1.0000	5.871	HNO ₃ , hot	b
Niobium	Nb ₂ O ₅	265.81	1.4305	13.290	HF, fusion	k
Osmium	Os metal	190.20	1.0000	19.020	H ₂ SO ₄ , hot	d
Palladium	Pd metal	106.40	1.0000	10.640	HNO ₃ , hot	
Phosphorous	KH ₂ PO ₄	136.09	4.3937	13.609	Water	
Platinum	K ₂ PtCl ₄	415.12	2.1278	41.511	Water	
Potassium	KCl	74.55	1.9065	7.455	Water	b
	$\mathrm{KHC}_{8}\mathrm{H}_{4}\mathrm{O}_{4}$	204.22	5.2228	20.422	Water	a,n
	$K_2Cr_2O_7$	294.19	3.7618	36.922	Water	a,n
Praseodymium	Pr ₆ O ₁₁	1021.43	1.2082	17.0247	HCl	e
Rhenium	Re metal	186.2	1.0000	18.62	HNO ₃	
	KReO ₄	289.30	1.5537	28.930	Water	
Rhodium	Rh metal	102.91	1.0000	10.291	H_2SO_4 , hot	
Rubidium	Rb_2SO_4	267.00	1.5628	13.357	Water	
Ruthenium	RuO ₄	165.07	1.6332	16.507	Water	
Samarium	Sm ₂ O ₃	348.70	2.3193	17.435	HCl, hot	e
candium	Sc ₂ O ₃	137.91	1.5339	6.895	HCl, hot	
elenium	Se metal	78.96	1.0000	7.896	HNO ₃ , hot	

Element		Molar Mass (g/mol)	1000 mg/L (g/L)	0.1 M (g/L)	Solvent	Comments
Silicon	Si metal	28.086	1.0000	2.8066	Conc. NaOH	
	SiO ₂	60.08	2.1391	6.008	HF	
Silver	AgNO ₃	169.87	1.5748	16.987	Water	b,m
Sodium	NaCl	58.422	2.5428	5.8442	Water	а
	Na ₂ C ₂ O ₄	134.01	2.9146	6.700	Water	a,n
Strontium	SrCO ₃	147.63	1.6849	14.763	HCl	b
Sulfur	K ₂ SO ₄	174.27	5.4351	17.427	Water	
Tantalum	Ta ₂ O ₅	441.89	1.2210	22.094	HF, fusion	k
Tellurium	TeO ₂	159.60	1.2507	15.960	HCl	
Terbium	Tb ₂ O ₃	365.85	1.1512	18.292	HCl, hot	e
Thallium	Tl ₂ CO ₃	468.75	1.1468	23.437	Water	b,c
Thulium	Tm ₂ O ₃	385.87	1.1421	19.293	HCl, hot	e
Tin	Sn metal	118.69	1.0000	11.869	HCl	
	SnO	134.69	1.1348	13.469	HCl	
Titanium	Ti metal	47.90	1.0000	4.790	H ₂ SO ₄ , 1:1	b
Tungsten	Na ₂ WO ₄ •2H ₂ O	329.86	1.7942	32.986	Water	h
Uranium	UO ₂	270.03	1.1344	27.003	HNO ₃	
	U ₃ O ₈	842.09	1.1792	28.068	HNO ₃	a,n
Vanadium	V ₂ O ₃	181.88	1.7852	9.0942	HCl, hot	
Ytterbium	Yb ₂ O ₃	394.08	1.1386	19.704	HCl, hot	e
Yttrium	Y ₂ O ₃	225.81	1.2700	11.291	HCl, hot	e
Zinc	ZnO	81.37	1.2448	8.137	HCl	b
Zirconium	Zr metal	91.22	1.0000	9.122	HF, fusion	i

Table IV. Compounds for Standard Solutions (cont.)

Table IV. Compounds for Standard Solutions (cont.)

^a Primary standard.

^b These compounds conform very well to the criteria and approach primary standard quality.

^c Highly toxic.

^d Very highly toxic.

^e The rare earth oxides, because they absorb CO_2 and water vapor from the air, should be freshly ignited prior to weighing. ^f mp = 29.5°C. The metal may be warmed and weighed as the liquid.

^g Sodium fluoride solutions will etch glass and should be freshly prepared.

^h Sodium tungstate loses both water molecules at 110°C. After drying, F.W. = 293.83, 1000 ppm = 1.5982 g/L, 0.1 M = 29.383 g/L. The water is not rapidly regained but the compound should be kept in a desiccator after drying and should be weighed quickly once it is removed.

ⁱ Zirconium and hafnium compounds were not investigated in the laboratory. The following methods have been recommended for dissolution of zirconium and hafnium (10). 1.000 g of the powdered metal is placed in a platinum dish with 5-10 mL of water and 102 mL of HF (1:5) and covered with a platinum lid or a paraffined watch glass. Once dissolved, the fluorine may be removed by adding 1-2 mL of sulfuric acid (cold) and evaporating to dense fumes or to dryness if required.

A fusion method may also be used. A 5-10 fold excess of $K_2S_2O_7$ is placed in a platinum or quartz crucible along with the sample. After melting to a homogeneous molten mass in a muffle furnace or burner the fusion product is dissolved in 2 N sulfuric acid.

A third method avoids the use of platinum ware. The sample of the metal is finely ground and placed in a small heatresistant beaker. Two to four grams of ammonium sulfate and 3-6 mL of sulfuric acid are then added. A homogeneous melt is obtained on a hot plate and dissolved in 2 N sulfuric acid.

^j MnSO₄ • H₂O may be dried at 110°C without losing the water of hydration.

^k Niobium and tantalum pentoxides are slowly soluble in 40% HF. The addition of H_2SO_4 accelerates the solution process. They may also be dissolved by a fusion techniques. $K_2S_2O_7$ is an often used flux. The pentoxides are fully decomposed at 650-800°C in the presence of an 8-10 fold amount of potassium pyrosulfate. A quartz or porcelain crucible is suitable and the resulting melt may be dissolved in sulfuric acid (11). The authors have used cold HF/H₂SO₄ successfully in plastic beakers with as 10-hr solution time.

¹Antimony potassium tartrate loses the $\frac{1}{2}$ H₂O with drying at 110°C. After drying, F.W. = 324.92, 1000 ppm = 2.6687 g/L, 0.1 M = 32.492 g/L. The water is not rapidly regained but the compound should be kept in a desiccator after drying and should be weighed quickly once it is removed. The dried compound is water soluble.

^m When kept dry, silver nitrate crystals are not affected by light. Solutions of silver nitrate should be stored in brown bottles.

ⁿ These compounds are sold as primary standards by the National Bureau of Standards, Office of Standard Reference Materials, Washington, D.C. 20234.

 $^{\circ}$ Boric acid may be weighed accurately directly from the bottle. It will loose 1 H₂O molecule at 100°C and a second H₂O molecule at approximately 130-140°C and is difficult to dry to a constant weight.