DATA SHEET FOR EXP. 1A

Your Name:			_ Date:	Station #:			
Names of other	Team members:						
IIIB: Measure	ment of common	ground voltage	es (not all blanks	have to be filled)	:		
Location of positive probe	Location of negative probe	Observed Voltage	Your choice for location positive probe	Your choice for location negative probe	Observed Voltage		
Power Supply	SCM						
Power Supply	Log Amp						
Power Supply	OA-1						
IVB: 1. Offse	t voltage using th	ne following sw	itch settings:				
NORMV INVV							
IVB: 2. Voltag	e source loading	(show calculati	ons)				
IVB: 2. Voltage source loading (show calculations) Output voltage (E_0) without $100 \Omega \log = V$							
Source V	Voltage $(E_s) = $		V				
	voltage (E ₀) with			V			
				'			
$R_A/R_B =$							
$R_A = \underline{\hspace{1cm}}$	Ω						
$R_B = \underline{\hspace{1cm}}$	Ω						
Show ca	lculation of R _A /F	R_{B}					
Show ca	Show calculation of R _A						
Show ca	lculation of R _B						
	- В						

IVC:	DMM Multimeter use (include ur	nits)			
	E (measured) =				
	i (measured) =				
	DMM current range used:				
	R (measured) =				
	% error in R (expected value is	the nominal value)			
	Show calculation of the % error	in R			
	i (calculated from E and R meas	sured) =			
	Show calculation of the current	i:			
	% difference between i calculate	ted from E and R measured and i measured			
	Show calculation of the % diffe	erence in i:			
VB:		on the DVM program and the Excel file proving that the orted by the program are correct.			
VC:	Attach Excel chart, labeled with date, your name, a title, label voltage axis (+0.5 to -0.5 V) and the time axis with labels and units. Use proper significant figures.				
VIA:	Voltage Balance				
Teammate's name:		Did Teammate performed voltage balance operation?			

VIB:	Voltage follower			
	measured $E_{\rm in}$ = measured $E_{\rm o}$ = expected $E_{\rm o}$ = % error =			
VIC:	Voltage amplifier (include units)			
	measured E_{in} = measured E_{o} = expected E_{o} =			
	% error =			
	Show formula and calculation of expected E_o :			
VID:	1. Response time (for nominal 10-s time constant)			
	Mark on your Excel chart E_0 , E_f and the halfway point $(E_0 + E_f)/2$, label axes, and attach a copy of the chart.			
	How many seconds does it take to reach 50% of the final voltage?s What is the expected RC (calculated from R & C)?s What is the experimental value of RC (calculated from time to reach 50%)?s			
	% error in RC =			
	What is the response time (not time constant) based on experimental value for RC?s			
2.	Response time (for nominal 1-s time constant)			
	Mark on your Excel chart E_0 , E_f and the halfway point $(E_0 + E_f)/2$, label axes, and attach a			

copy of the chart.

The response time estimated from the chart is _____s.

From your experimental results, by what factor does the response time	decrease when RC is
decreased by a factor of 10? (just give one significant figure)	
VIE: Integrator	
Measured E_{in} =	_ mV
Open the file in Excel and produce a labeled chart; attach a hardcopy o	f the chart
Determine slope up and slope down using trendlines = 1	2 mV/s
Average of absolute value of slopes for 2 runs =	mV/s
Theoretical slope of OA output (calculated from equation 6) =	mV/s
Show calculation	
Experimental % error in slope = (based on values above)	
Estimated % error in slope =	_
Below show the calculation of the estimated % error in the slope (uncertainty)	. It is based on
propagation of error or uncertainty mathematics and estimates of the uncertain	•
component tolerances (Table I) and the uncertainty due to the DMM used to m	neasure E _{in} (Table II).
(See lecture notes or Harris for propagation of <i>systematic</i> error.)	
Is your experimental error within your estimated error?	
Based on this calculation, what is the main source of the experimental error?	