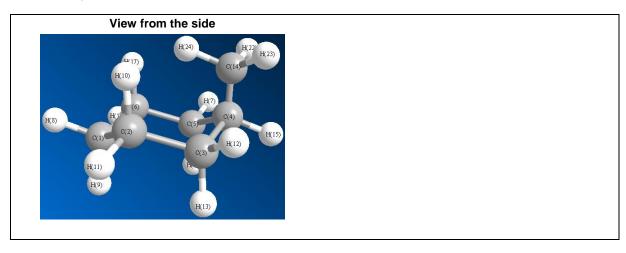
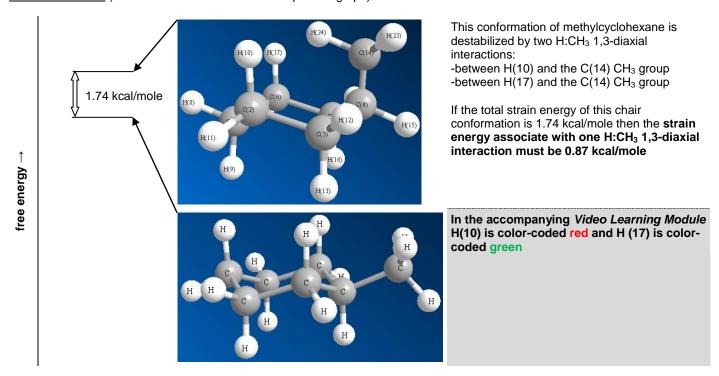

# An overview

In this learning module we will consider the chair conformations of various monosubstituted cyclohexanes. In particular we will identify and quantify any destabilizing interactions.


# Methylcyclohexane

## equatorial methyl group

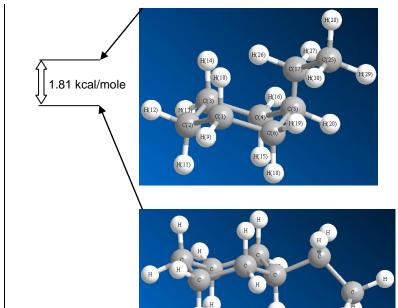



Please see Video Learning Module 3.3A

## axial methyl group



Please see Video Learning Module 3.3B

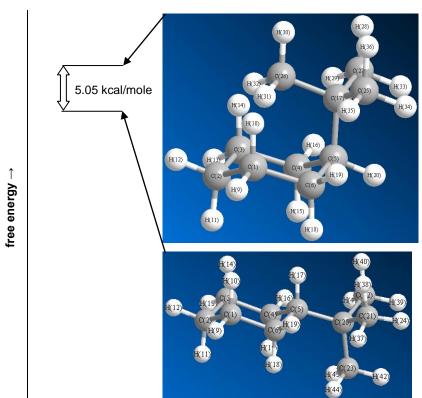

Relative stabilities (least stable conformation at the top of the graph)



Please see Video Learning Module 3.3C

# Ethylcyclohexane

free energy →




This conformation of ethylcyclohexane is destabilized by two H:CH<sub>2</sub>CH<sub>3</sub> 1,3-diaxial interactions:

- -between H(14) and the C(17)  $CH_2CH_3$  group
- -between H(10) and the C(17) CH<sub>2</sub>CH<sub>3</sub> group

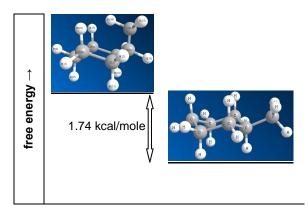
If the total strain energy of this chair conformation is 1.81 kcal/mole then the strain energy associate with one H:CH<sub>2</sub>CH<sub>3</sub> 1,3-diaxial interaction must be 0.91 kcal/mole

## Tert-butylcyclohexane



This conformation of *tert*-butylcyclohexane is destabilized by two H:C(CH<sub>3</sub>)<sub>3</sub> 1,3-diaxial interactions:

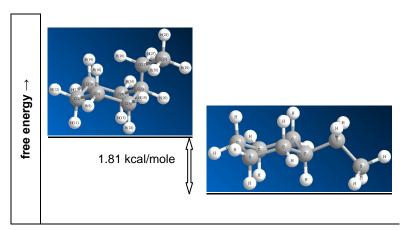
-between H(14) and the C(17)  $C(CH_3)_3$  group


-between H(10) and the C(17) C(CH<sub>3</sub>)<sub>3</sub> group

If the total strain energy of this chair conformation is 5.05 kcal/mole then the strain energy associate with one H:C(CH<sub>3</sub>)<sub>3</sub> 1,3-diaxial interaction must be 2.53 kcal/mole

Learning Module 3.3 © J.R. Walker 2011 Page 3 of 4

## Calculating the equilibrium constant and composition at equilibrium

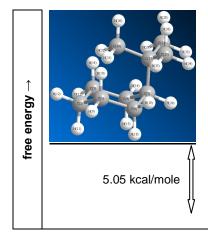

#### Methylcyclohexane

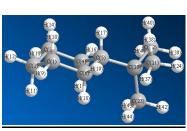


$$\Delta G^{\circ}$$
?  $\Delta G^{\circ}$  = -1.74 kcal/mole

$$\begin{split} &K_{eq}?\\ &K_{eq} = 10^{\text{-}\Delta G^{\circ}/2.3RT}\\ &K_{eq} = 10^{\text{-}(-1.74)/(1.364)} = 18.9\\ &K_{eq} = \left[\frac{\text{cyclohexam, equatorialR group}}{\text{cyclohexam, axial R group}}\right] = \frac{18.9}{1}\\ &\text{\% equatorialR group} = \left[\frac{18.9}{1+18.9}\right] \text{x} \, 100 = 95\%\\ &\text{\% axial R group} = \left[\frac{1}{1+18.9}\right] \text{x} \, 100 = 5\% \end{split}$$

#### Ethylcyclohexane





$$\Delta G^{\circ}$$
?  
 $\Delta G^{\circ} = -1.81 \text{ kcal/mole}$ 

$$\begin{split} &K_{eq}?\\ &K_{eq} = 10^{\text{-}\Delta G^{\text{-}}/2.3RT}\\ &K_{eq} = 10^{\text{-}(-1.81)/(1.364)} = 21.2\\ &K_{eq} = \left[\frac{\text{ethylcyclohexare, equatorial R group}}{\text{ethylcyclohexare, axial R group}}\right] = \frac{21.2}{1}\\ &\% \, \text{equatorial R group} = \left[\frac{21.2}{1+21.2}\right] \text{x} \, 100 = 95.5\% \end{split}$$

% axialR group =  $\left[\frac{1}{1+21.2}\right]$  x 100 = 4.5%

# Tert-butylcyclohexane





$$\Delta G^{\circ}$$
?  
 $\Delta G^{\circ} = -5.05 \text{ kcal/mole}$ 

$$\begin{split} &K_{eq}?\\ &K_{eq}=10^{\text{-}\Delta G^{\text{o}}/2.3RT}\\ &K_{eq}=10^{\text{-}(-5.05)/(1.364)}=5039\\ &K_{eq}=\left[\frac{\text{tert}-\text{butylcycldhexane, equatorial R group}}{\text{tert}-\text{butylcycldhexane, axial R group}}\right]=\frac{5039}{1}\\ &\%\,\text{equatorial R group}=\left[\frac{5039}{1+5039}\right]x\,100=99.98\%\\ &\%\,\text{axial R group}=\left[\frac{1}{1+5039}\right]x\,100=0.02\% \end{split}$$