

DEPARTMENT OF CHEMISTRY

Sophomore Organic Chemistry for non-Chemistry Majors

CHEMISTRY 331 ORGANIC CHEMISTRY I

GENERAL INFORMATION

Chemistry 331, Chemistry 332 and Chemistry 337 constitute the course sequence for pre-professional students (medicine, dentistry, optometry, pharmacy and other health professions), chemical engineering students and other students, not majoring in chemistry, who require a year of organic chemistry.

COURSE STRUCTURE PREREQUISITES

Four credit-hour course Thirty one hour lectures Ten one hour recitations One year of freshman chemistry CH 121, CH 122, CH 123; or CH 221, CH 222, CH 223

ACID-BASE CHEMISTRY IN ORGANIC CHEMISTRY

Bronsted-Lowry acids and bases

- K_a values, pK_a values, equilibrium constants
- Predicting the positions of acid-base equilibria

Predicting approximate pKa values

Ranking acids in order of acid strength; ranking bases in order of base strength

Acids and bases in organic chemistry

Lewis acids and bases

Nucleophiles and electrophiles

Mechanism of an acid-base reaction

-two-electron processes; the use of curved arrow notation

ALKANE

Nomenclature, structure and bonding, physical properties Stereochemistry

-structural isomerism, stereoisomerism, conformational isomerism

Conformations of acyclic alkanes, cyclic alkanes including cyclohexane, monosubstituted cyclohexanes and disubstituted cyclohexanes

-torsional strain, steric strain, angle strain, ring strain Conformational equilibria

-equilibrium constants, composition at equilibrium Conversion to alkyl halides

-one-electron processes; chain reactions; reactive intermediates; energy diagrams; mechanistic aspects

ALKENES

Nomenclature, structure, bonding, physical properties Stereochemistry

-configurational isomerism, chirality, optical activity Conversion to Markovnikov alkyl halides

-hydrohalogenation, protonation, carbocations, carbocation rearrangements, regiochemistry/stereochemistry, mechanistic aspects

Conversion to Markovnikov alcohols

-hydration via the aqueous acid pathway, protonation, carbocations, carbocation rearrangements, regiochemistry/stereochemistry, mechanistic aspects -hydration via the oxymercuration-demercuration pathway, mercurinium ions, organomercurial alcohols, regiochemistry/stereochemistry, mechanistic aspects Conversion to anti-Markovnikov alcohols

-hydration via the hydroboration-oxidation pathway, alkylboranes, regiochemistry/stereochemistry, mechanistic aspects

Conversion to geminal-dihalides and halohydrins -cyclic halonium ions, anti-addition,

regiochemistry/stereochemistry, mechanistic aspects Conversion to alkanes

-catalytic hydrogenation, syn-addition, stereochemistry, mechanistic aspects

Conversion to epoxides

-syn-addition, stereochemistry, mechanistic aspects Conversion to geminal-diols

-using osmium tetroxide, using permanganate, stereochemistry, mechanistic aspects

Conversion to aldehydes, ketones &/or carboxylic acids -oxidative cleavage using permanganate, ozonolysis

ALKYL HALIDES

Nomenclature, structure, bonding, physical properties

S_N1 and E1 reactions -rate laws substituent effects

-rate laws, substituent effects, leaving group effects, solvent effects, rearrangements, stereochemistry, mechanistic aspects, competition

-applications to synthesis

S_N2 and E2 reactions

-rate laws, nucleophilicity, steric effects, solvent effects, leaving group effects, stereochemistry, mechanistic aspects, competition

-applications to synthesis

ALKYNES

Nomenclature, structure and bonding, physical properties Preparations of alkynes

-via the double dehydrohalogenation of alkyl dihalides, mechanistic aspects

Conversion to Markovnikov vinyl halides, dihalides -protonation, vinyl cations, regiochemistry/stereochemistry, mechanistic aspects

Conversion to ketones

-hydration via the mercuric ion catalyzed pathway, regiochemistry/stereochemistry, keto-enol tautomerism, mechanistic aspects

Conversion to alkanes and cis alkenes

-via catalytic hydrogenation, stereochemistry Conversion to trans alkenes

-via metal-ammonia reduction to trans alkenes, stereochemistry, mechanistic aspects

Conversion to geminal dihalides, tetrahalides

-stereochemistry, mechanistic aspects

Chemistry acetylide ions

-preparations/properties, applications to synthesis

DEPARTMENT OF CHEMISTRY

Sophomore Organic Chemistry for non-Chemistry Majors

CHEMISTRY 332 ◊ ORGANIC CHEMISTRY II

GENERAL INFORMATION

Chemistry 331 (lecture), Chemistry 332 (lecture) and Chemistry 337 (lecture and laboratory) constitute the course sequence for pre-professional students (medicine, dentistry, optometry, pharmacy and other health professions), chemical engineering students and other students, not majoring in chemistry, who require a year of organic chemistry.

COURSE STRUCTURE PREREQUISITES

Four credit-hour course Thirty one hour lectures Ten one hour recitations One year of freshman chemistry CH 121, CH 122, CH 123; or CH 221, CH 222, CH 223 and CH 331

ALCOHOLS AND ETHERS

Nomenclature, structure, bonding, physical properties Conversion to alkyl halides and sulfonate esters

-mechanistic aspects, applications to synthesis

Conversion to alkenes

-via the acid-catalyzed dehydration of alcohols, E1 and E2 pathways, mechanistic aspects

Conversion to aldehydes and ketones

- -oxidizing agents (Jones reagent, PCC)
- -oxidation of primary alcohols to aldehydes and carboxylic acids, mechanistic aspects
- -oxidation of secondary alcohols to ketones, mechanistic aspects

Chemistry of ethers

-epoxide ring opening, mechanistic aspects

- -Williamson ether synthesis, mechanistic aspects
- -acid-catalyzed cleavage of ethers, mechanistic aspects

ALDEHYDES AND KETONES

Nomenclature, structure, bonding, physical properties Relative reactivities of aldehydes and ketones Conversion to alcohols

-via the addition of hydride and organometallic reagents (preparations/properties of sodium borohydride, lithium aluminum hydride, Grignard reagents, acetylide ions, organolithium compounds), mechanistic aspects

Conversion to hydrates, hemiacetals, acetals -via the addition of water and alcohols, acetals as protecting

groups in synthesis, mechanistic aspects

Conversion to imines

-via the addition of ammonia and its derivatives, mechanistic aspects

AROMATICITY AND CHEMISTRY OF BENZENE

Nomenclature, structure, bonding, physical properties Aromaticity

Electophilic aromatic substitutions

-halogenation, nitration, sulfonation, Friedel-Crafts alkylation,

Friedel-Crafts acylation, mechanistic aspects

Clemmensen reduction

Wolff-Kishner reduction

CARBOHYDRATES

Nomenclature, structure, bonding, physical properties Aldoses, ketoses D sugars, L sugars Furanoses, furanosides, pyranoses, pyranosides Alpha and beta anomers Oxidations -conversion to aldaric acids -conversion to aldonic acids Reductions

-conversion to alditols Reducing sugars, nonreducing sugars Alpha-glycosidic linkages, beta-glycosidic linkage the constituent sugar(s) of a disaccharide; a trisaccharide; a polysaccharide

CARBOXYLIC ACIDS AND ESTERS

Nomenclature, structure, bonding, physical properties Chemistry of carboxylic acids -esterification, metal hydride reduction, conversion to ketones, mechanistic aspects Chemistry of esters -acid-catalyzed hydrolysis, saponification, metal hydride

-acid-catalyzed hydrolysis, saponification, metal hydrole reduction, conversion to alcohols, mechanistic aspects Fatty acids Waxes, triglycerides, fats, oils

Soaps

STRUCTURE DETERMINATION

Degrees of unsaturation Energy, wavelength, frequency Infrared spectroscopy -typical vibrational modes -predicting/interpreting spectral features -compound identification

Proton NMR spectroscopy

-shielding, deshielding

-chemically equivalent protons, non-chemically equivalent protons

-splitting, pitchfork diagrams

-predicting/interpreting spectral features

-compound identification

DEPARTMENT OF CHEMISTRY

Sophomore Organic Chemistry for non-Chemistry Majors

CHEMISTRY 337 ◊ ORGANIC CHEMISTRY LABORATORY

GENERAL INFORMATION

Chemistry 331 (lecture), Chemistry 332 (lecture) and Chemistry 337 (lecture and laboratory) constitute the course sequence for pre-professional students (medicine, dentistry, optometry, pharmacy and other health professions), chemical engineering students and other students, not majoring in chemistry, who require a year of organic chemistry.

COURSE STRUCTURE

PREREQUISITES

Four credit-hour course Ten four-hour labs Nine eighty minute lectures (relevant chemistry and laboratory techniques) Nine eighty minute lectures (topics listed below) One year of freshman chemistry CH 121, CH 122, CH 123; or CH 221, CH 222, CH 223; **and** CH 331, CH 332 or CH 334, CH 335, CH 336

ENOLATE CHEMISTRY

Alkylation Aldol condensation Claisen condensation

RADICAL CHEMISTRY

Addition of hydrogen halides to alkenes Radical polymerization

AMINES AND AMIDES

Nomenclature, structure and bonding, physical properties Preparations and reactions

AMINO ACIDS

Classification, nomenclature Acid-base properties of amino acids Separation techniques Electrophoresis and thin-layer chromatography

PROTEINS

Classification, structure Peptide bonds; disulfide bonds Peptide synthesis

LABORATORY TECHNIQUES

Melting point determination Recrystallization Extraction (solid-liquid; liquid-liquid) Chromatography (column; TLC; GC) Steam distillation Preparation/handling of moisture-sensitive reagents Spectroscopy (IR; NMR)

LABORATORY EXPERIMENTS

- Melting point determinations
 Techniques Melting point determination
- Isolation/characterization of trimyristin from nutmeg
 Techniques Solid-liquid extraction, simple distillation, melting point determination
- Isolation/characterization of green-leaf pigments from spinach
 Techniques Solid-liquid extraction, liquid-liquid extraction, column chromatography, TLC
- Isolation/characterization of lactose Chemistry Benedict's test
- Isolation/characterization of essential oils from spices Techniques Steam distillation, liquid-liquid extraction, IR, NMR
- Synthesis of 1-butene, cis-2-butene and trans-2-butene via E1 dehydration of 2-butanol Chemistry Dehydration alcohols Techniques GC
- Synthesis of 1-butene, cis-2-butene and trans-2-butene via E2 dehydrohalogenation of 2-bromobutane Chemistry Dehydrohalogenation of alkyl halides Techniques GC
- Synthesis of salicylic acid via saponification
 Chemistry Ester saponification
 Techniques Heating under reflux, recrystallization, melting point determination, IR, NMR
- Synthesis of dibenzalacetone via an aldol condensation
 Chemistry Aldol condensation
 Techniques Recrystallization, melting point determination, IR, NMR
- Synthesis of benzoic acid via a Grignard reaction Chemistry Grignard chemistry Techniques Prep/handling of moisture-sensitive reagents, liquid-liquid extraction, recrystallization, melting point determination, IR, NMR
- Synthesis of 9,10-dihydroanthracene-9,10-α,β-succinic acid anhydride via a Diels-Alder reaction Chemistry Diels-Alder reaction Techniques Vacuum filtration, recrystallization, IR, NMR
- Asymmetric reduction of 1-phenyl-1,2-propanedione
 Chemistry Asymmetric reduction
 Techniques TLC, liquid-liquid extraction, IR and NMR