## Worksheet 9

1. Consider the following equilibrium, for which $\mathrm{K}_{\mathrm{p}}=0.0752$ at $480^{\circ} \mathrm{C}$.

$$
2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a)What is the value of $\mathrm{K}_{\mathrm{p}}$ for the reaction $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ ?
b) What is the value of $\mathrm{K}_{\mathrm{p}}$ for the reaction $\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
c) What is the value of $K_{c}$ for the reaction in part (b)
2. Write the equilibrium constant expression, $\mathrm{K}_{\mathrm{c}}$, for the following reactions. In each case indicate whether the reaction is homogeneous or heterogeneous
a) $3 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$
b) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})$
c) $\mathrm{Ti}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{TiCl}_{4}(\mathrm{l})$
3. Phosphorous trichloride gas and chlorine gas react to form phosphorous pentachloride gas:

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})
$$

A gas vessel is charged with a mixture of $\mathrm{PCl}_{3}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$, which is allowed to equilibrate at 450 K . At equilibrium the partial pressures of the three gases are $\mathrm{P}_{\mathrm{PC} 13}=0.124 \mathrm{~atm}, \mathrm{P}_{\mathrm{C} 12}=0.157 \mathrm{~atm}$, and $\mathrm{P}_{\mathrm{PC} 15}=1.30 \mathrm{~atm}$. a) What is the value of the $\mathrm{K}_{\mathrm{p}}$ at this temperature? b) Does the equilibrium favor reactants or products?
4. At $218^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=1.2 \times 10^{-4}$ for the equilibrium

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

Calculate the equilibrium concentrations of $\mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{~S}$ if a sample of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a closed vessel and decomposes until equilibrium is reached.

