Chemistry 221 Hour exam 1 Department of Chemistry, Oregon State University

Name EXAM KEY

30 June 2009

$$h = 6 \times 10^{-34} J \cdot s \tag{1}$$

$$c = 3 \times 10^8 m/s \tag{2}$$

- 1. (21 pts) Name these:
 - (a) Cl2O7 dichlorine heptaoxide
 - (b) PCl3 phosphorus tachloride
 - (c) SF6 sulfur hexafluoride
 - (d) AlCl3 aluminum (tri) hloride
 - (e) CaCO3 calcium carbonate
 - (f) HNO3 nitric acid
 - (g) $Fe_2(SO_4)_3$ Iron (III) Sulfate
- 2. (9 pts) Carbon has three common isotopes, what are they? Designate each by atomic number, and nuclear charge.

- 3. (20 pts) Provide the electronic configuration of the following atoms or ions as well as the values of A and Z for its nucleus.

 - (a) He $1S^2$ A=4, Z=2(b) N $1S^22S^22P^3$ A=14, Z=7(c) Zn^{2+} $Ar 3d^{10}$ A=65, Z=30(d) Al^{3+} Ne Ar 2r 4 A=27, Z=13(e) Ar 4 Ar

- 4. (19 pts) Periodic trends
 - (a) Arrange the atoms, Li, Cs, K, Rb, from highest to lowest covalent radius.

3 pt

(b) Arrange the elements, K, Ti, Cu, Br, from highest to lowest first ionization energy.

Br>Cu>Ti>K

- (c) Arrange the preceding list in the order of decreasing electron affinity.

 Sant to the above

 omt
- (d) Attach the names: metal, semi-metal, halogen, noble (or inert) gas, alkali metal, alkaline earth to the following:

alkali halogen) (semi-metal transition metal

- (e) Quantum numbers. What are an acceptable set of quantum numbers for a 2p electron and a pair of 3d electrons
- 2 pts 2P N=2, L=1, $M_1=\pm 1,0$; and $M_5=\pm 1/2$ 4 pts 3d N=3, L=2, $M_1=\pm 1,0$ and $M_5=\frac{1}{2}$ other $M_5=-\frac{1}{2}$

7. (16 pts) Rydberg's equation for the absorption and emission wavelengths of an element with nuclear charge Z and with one electron, is

$$\frac{1}{\lambda} = Z^2 R \left(\frac{1}{n_a^2} - \frac{1}{n_b^2} \right) \qquad R = 1.0 \times 10^5 cm^{-1} \qquad n_a < n_b$$

(a) Calculate the frequency of light which excites a transition from the 2p to the 3d energy level of C^{5+} . Z=6

$$\frac{1}{\lambda} = 36 \cdot 10^{5} \text{ cm}^{-1} \left\{ \frac{1}{2^{2}} - \frac{1}{3^{2}} \right\} = 5 \times 10^{5} \text{ cm}^{-1}$$

$$\frac{1}{4} - \frac{1}{9} = \frac{5}{36}$$

$$D = \frac{c}{\lambda} = \frac{3 \times 10^{10} \text{ cm}}{\text{sec}} * 5 \times 10^{5} \text{ cm}^{-1} = 15 \times 10^{15} \text{ Hz}$$

(b) What is the wavelength (in nm) of the photon that ionizes the 1s electron of C^{5+} ? In other words, is responsible for the photochemical reaction

$$\frac{h\nu + C^{5+} \to C^{6+} + e^{-}}{\lambda} = 30 + 10^{5} \text{ cm}^{-1} \left\{ 1 - \frac{1}{\varpi^{2}} \right\} = 30 \times 10^{5} \text{ cm}^{-1}$$

$$\lambda = \frac{1}{30 \times 10^{5}} \text{ cm}^{2} = 2.8 \times 10^{-7} \text{ cm} \approx 2.8 \times 10^{-7} \text{ cm} \approx 2.8 \times 10^{-7} \text{ m}$$

5. (8 pts) When a photon with λ = 500 nm strikes a potassium surface, an electron is ejected. If the threshold energy of the outermost electron in potassium is 2.0ev (1 ev = 1.6 × 10⁻¹⁹J), what is the kinetic energy of the outgoing electron?

$$h\nu = KE + h\nu_{0}$$

$$KE = h\nu - h\nu_{0} = \frac{h \cdot C}{\lambda} - h\nu_{0} = \frac{(6x10^{-34} \cdot S)(3x10^{6} \text{m})}{590 \times 10^{-9} \text{m}}$$

$$-(2ev)*(1.6x10^{-19} \text{J})$$

$$KE = \frac{18}{5} \times 10^{-19} - 3.2 \times 10^{-19}$$

$$= 0.4 \times 10^{-19} \text{J}$$

6. (8 pts) Thermal imaging devices (night vision glasses) are sensitive to radiation with wavelengths ranging from 7000 to 14,000 nm. Being that the peak wavelength of light emitted by a perfect black body obeys

$$\lambda_{peak}T = 2.9 \times 10^6 nm \cdot K$$

then what is the temperature range over which a thermal body can be detected?

$$T = \frac{2.9 \times 10^{6} \text{m} \cdot \text{K}}{7 \times 10^{3}}, \quad T = \frac{2.9 \times 10^{6} \text{nm} \cdot \text{K}}{14,000 \text{nm}}$$

$$T = \frac{2.9 \times 10^{3} \text{K}}{7}, \quad T = \frac{2.9 \times 10^{8} \text{K}}{14} \times 10^{8} \text{K}$$

$$T = 207 - 414 K$$