1. Write a balanced chemical equation (use your notes or text as a source of reactions) for:
(A) an exothermic process in which entropy increases.
(B) an exothermic process in which entropy decreases.
(C) an endothermic process in which entropy increases.
(D) an endothermic process in which entropy decreases.
2. Identify (if possible) $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ as being (-), (+), or (?) for:
(A) $\quad \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}$ (s)
(B) $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
(C) The combustion of methanol (liquid $\mathrm{CH}_{3} \mathrm{OH}$) to produce $\mathrm{CO}_{2}(\mathrm{~g})$ and steam.
3. Consider the "Cold Pack" reaction, $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$. Do you expect ΔH to be positive or negative? Do you expect $\Delta \mathrm{S}$ to be positive or negative? Do you expect $\Delta \mathrm{G}$ to be positive or negative?
4. Consider the complete combustion of methane gas in oxygen to produce carbon dioxide and liquid water. Determine $\Delta \mathrm{G}^{\mathrm{o}}$ reaction.
5. Which of the following produces a DECREASE in entropy of the system? The system is shown in bold.

Dissolving sugar in a cup of coffee.
Condensation of water on the surface of a glass of iced tea on a hot summer day.
Boiling water in a pot on the stove to make macaroni and cheese.
Allowing the liquid propane in a gas grill to escape from the tank.
Producing $\mathrm{CO}_{\mathbf{2}}$ gas from baking soda $\left(\mathbf{N a H C O}_{3}\right)$ when baking a cake.
6. What is the Second Law of Thermodynamics?
7. What is the Third Law of Thermodynamics?
8. Calculate the value (in kJ) of $\Delta \mathrm{G}^{0}$ at $25^{\circ} \mathrm{C}$ for $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})<==>2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$ given:

substance	$\Delta \mathbf{H}_{\mathbf{f}}^{\mathbf{0}}, \mathbf{k J ~ m o l}^{\mathbf{- 1}}$	$\mathbf{S}^{\mathbf{0}} \mathbf{,} \mathbf{J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}$
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$	-191.17	143.9
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.83	69.91
$\mathrm{O}_{2}(\mathrm{~g})$	0	205.14

9. Which of the following reactions is unfavorable at low temperatures but becomes favorable as the temperature increases? At what temperature does the process become favored?
(A) $\quad 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})-->\mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{\mathrm{o}}=-566 \mathrm{~kJ} ; \Delta \mathrm{S}^{\mathrm{o}}=-173 \mathrm{~J} / \mathrm{K}$
(B) $\quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$--> $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{\mathrm{o}}=484 \mathrm{~kJ} ; \Delta \mathrm{S}^{\mathrm{o}}=90.0 \mathrm{~J} / \mathrm{K}$
(C) $\quad 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})-->2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{0}=-164 \mathrm{~kJ} ; \Delta \mathrm{S}^{0}=149 \mathrm{~J} / \mathrm{K}$
(D) $\quad \mathrm{PbCl}_{2}(\mathrm{~s})-->\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{\mathrm{o}}=23.4 \mathrm{~kJ} ; \Delta \mathrm{S}^{\mathrm{o}}=-12.5 \mathrm{~J} / \mathrm{K}$
