Chemistry 223 Worksheet 6

- 1. Write a balanced chemical equation (use your notes or text as a source of reactions) for:
 - (A) an exothermic process in which entropy increases.
 - (B) an exothermic process in which entropy decreases.
 - (C) an endothermic process in which entropy increases.
 - (D) an endothermic process in which entropy decreases.
- 2. Identify (if possible) ΔH , ΔS , and ΔG as being (-), (+), or (?) for:
 - (A) $CO_2(g) \rightarrow CO_2(s)$
 - (B) $2 \text{ NO}_2(g) \rightarrow 2 \text{ NO}(g) + O_2(g)$
 - (C) The combustion of methanol (liquid CH₃OH) to produce CO₂ (g) and steam.
- 3. Consider the "Cold Pack" reaction, NH_4NO_3 (s) $\rightarrow NH_4NO_3$ (aq). Do you expect ΔH to be positive or negative? Do you expect ΔG to be positive or negative?
- 4. Consider the complete combustion of methane gas in oxygen to produce carbon dioxide and liquid water. Determine $\Delta G^{o}_{reaction}$.
- 5. Which of the following produces a DECREASE in entropy of the system? The system is shown in bold.

Dissolving sugar in a cup of coffee.

Condensation of water on the surface of a glass of iced tea on a hot summer day.

Boiling water in a pot on the stove to make macaroni and cheese.

Allowing the liquid **propane** in a gas grill to escape from the tank.

Producing CO₂ gas from baking soda (NaHCO₃) when baking a cake.

- 6. What is the Second Law of Thermodynamics?
- 7. What is the Third Law of Thermodynamics?
- 8. Calculate the value (in kJ) of ΔG° at 25°C for $2H_2O_2(aq) <==> 2H_2O(1) + O_2(g)$ given:

substance	ΔH_f^o , kJ mol ⁻¹	S ^o , J mol ⁻¹ K ⁻¹
$H_2O_2(aq)$	-191.17	143.9
H ₂ O(1)	-285.83	69.91
$O_2(g)$	0	205.14

9. Which of the following reactions is unfavorable at low temperatures but becomes favorable as the temperature increases? At what temperature does the process become favored?

(A)
$$2 CO(g) + O_2(g) --> CO_2(g); \Delta H^o = -566 \text{ kJ}; \Delta S^o = -173 \text{ J/K}$$

(B)
$$2 H_2O(g) \longrightarrow 2 H_2(g) + O_2(g); \Delta H^0 = 484 \text{ kJ}; \Delta S^0 = 90.0 \text{ J/K}$$

(C)
$$2 N_2O(g) --> 2 N_2(g) + O_2(g); \Delta H^o = -164 \text{ kJ}; \Delta S^o = 149 \text{ J/K}$$

(D)
$$PbCl_2(s) \longrightarrow Pb^{2+}(aq) + O_2(g); \Delta H^o = 23.4 \text{ kJ}; \Delta S^o = -12.5 \text{ J/K}$$