

Chemistry 123 Exam 1 Spring 2006 April 27, 2006 Oregon State University Dr. Richard Nafshun

DO NOT OPEN THIS EXAM UNTIL INSTRUCTED. CALCULATORS ARE NOT TO BE SHARED.

Test Form 1

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number blank.

This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form in the appropriate stack. You may keep the exam packet, so please show your work and mark the answers you selected on it.

 $K_a[CH_3COOH (aq)] = 1.80 \times 10^{-5}$

 $K_a[C_6H_5COOH (aq)] = 6.30 \times 10^{-5}$

		(acetic acid)							(benzoic acid)						j		
		$K_a[CH_2ClCOOH (aq)] = 1.40 \times 10^{-3}$						K	$K_b[NH_3 (aq)] = 1.80 \times 10^{-5}$								
		(chloroacetic acid)						(a	(ammonia)								
		$K_a[HCOOH (aq)] = 1.80 \times 10^{-4}$						K	K_{sp} [PbCl ₂ , lead chloride] = 1.6 x 10 ⁻⁵								
	1	(formic acid)															
l TT	1	K_{sp} [PbF ₂ , lead fluoride] = 3.6 x 10 ⁻⁸					К	K_{sp} [MgF ₂ , magnesium fluoride] = 3.7 x 10^{-8}								2	
H Hydrogen		resp [1 of 2, lead fluoride] 5.0 x 10					1xsp [11151 2, magnesiam matrice] 3.7 X 10							_]	He		
1.0079																	Helium 4.0026
3	4	1										5	6	7	8	9 .	10
Li	Be											В	C	N	0	F	Ne
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
6.941	9.01218		•					. *				10.81	12.011	14.0067	15.9994	18.9984	20.179
11 N.T.	12											13	14	15	16	17	18
Na	Mg	1										Al	Si .	P	S	Ci	Ar
Sodium 22.98977	Magnesium 24.305											Aluminum 26.9815	. Silicon 28.0855	Phosphorus 30.97376	Sulfur 32.06	Chlorine 35.453	Argon 39.948
. 19	20	21	22	23	24	25	26	27	28	-29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{v}	Cr	Mn	Fe	Co	Ni	Cu	Źn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	lron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.70	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 85,4678	Strontium 87.62	Yttrium 88,9059	Zirconium 91.22	Niobium 92.9064	Molybdenum 95.94	Technetium 98.906	Ruthenium 101.07	Rhodium 102.9055	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
55	56	57-71	72	73	74	75	76	102.9055	106.4	107.868	112.41	114.82	118.69	121.75	127.60	126.9045	131.30
Cs	Ba	3,-,1	Hf	Ta	$\mathbf{w}^{''}$	Re	Os	I '''	78 Pt	Au	Hg 80	81 T1	Pb	Bi	84 Po	At	Rn
Cesium	Barium	*Rare earths	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.9054	137.33		178.49	180.9479	183.85	186.207	190.2	192.22	195.09	196.9665	200.59	204.37	207.2	208.9804	(209)	(210)	(222)
87	88	89-103	104	105	. 106	107	108	109	110	111			114				<u></u>
Fr	Ra		Rf	Ha	Sg	Ns	Hs	Mt	#	#							
Francium	Radium	[†] Actinides	Rutherfordium	Hahnium	Seaborgium	Neilsbohrium	Hassium	Meitnerium						T			
(223)	226.0254	•	(261)	(262)	(263)	(262)	(265)	(266)	(269)		I	l		1			

is:
$$K_{\alpha} = 1.8 \times 10^{-5} = \frac{\chi^2}{0.020}$$
 where $\chi = [H^4]$

$$(D)$$
 3.22

(A)
$$(1.86 \times 10^{-11} \text{ M})$$

(C)
$$5.37 \times 10^{-4} \text{ M}$$

A student measures the pH of an aqueous solution to be 2.40. This solution is: 4.

- (acidic) (A)
- neutral (B)
- basic (C)

- 5. The pH of an aqueous system is measured to be 4.00. The pOH of this system is:
 - (A) 4.00

00. P = HQ

- (B) 7.00
- 00.01 = 00.41 = HOQ

- (C) 3.00
- (D) (10.00)
- (E) 11.00
- 6. The pH of a buffer system which is 0.225 M CH₃CH₂COOH (aq) and 0.225 M CH₃CH₂COONa (aq) is 4.88.

The pH of a buffer system which is 0.225 M CH₃CH₂COOH (aq) and 0.450 M CH₃CH₂COONa (aq) is:

(A) 4.88

- More Base -
- (B) greater than 4.88

Higher pH than 4.88

(C) less than 4.88

- 7. Consider HCl, CH₃COOH, CH₂ClCOOH, and C₆H₅COOH. The <u>strongest</u> acid is:
 - (A) (HCI) Strong Acid
 - (B) CH₃COOH.
 - (C) CH2CICOOH. > Weak acids
 - (D) C_6H_5COOH .

8. Methylamine (pictured below) has a lone pair of electrons on the nitrogen, can accept a proton, and is in equilibrium with methylammonium ion in water.

H H

H—C—N +
$$H_2O$$

H H

H H

H H

H H

H H

H H

methylamine

methylammonium ion

Methylamine is:

- (A) a strong acid
- a weak acid (B)
- a strong base (C)
- a weak base > weak because of equilibrium arrows
 neither an acid or a base because it accepts a proton (D)
- (E)
- A student titrates 0.3400 grams of KHP (potassium hydrogen phthalate; MW=204.2 g/mol) to 9. the equivalence point with 23.05 mL of NaOH (aq). The concentration of the NaOH solution is:
 - (A) 13.84 M
 - $(0.0722 \,\mathrm{M})$ (B)
 - 0.3012 M (C)
 - 0.100 M (D)
 - $7.224 \times 10^{-5} M$ (E)

- Consider the reaction of acetic acid (CH₃COOH) and water. The conjugate base is: 10.
 - H^+ or H_3O^+ (A)
 - (B) NH_3
 - H_2O (C)
 - (CH₃COO (D)
 - CH₃COOH (E)
- CH3COOH + H2O => CH3COOT + H3O+

- The pH of 1.00 M ammonium nitrate, NH₄NO₃ (aq), is: 11.
 - Greater than 7.00. (A)
 - (B) 7.00.
 - (Less than 7.00. (C)
- lowers
- 12. A student titrates 25.00 mL of HCl (aq) with 28.44 mL of 0.1025 M NaOH (aq) to reach the equivalence point. The concentration of HCl (aq) is:
 - 8.576 M (A)
 - (B) 0.0901 M
 - (C) 11.10 M
 - 72.88 M (D)

 - (0.1166 M (E)

- MACIVACI = MNAOHVHAOH
- (MHC) (25,00 ML) = (28.44 ML) (0,1025 M)
 - Mnc = 0.1166M

- 13. Which of the following selections contains only acids?
 - HNO₃, NaNO₃, HCl, NaCl. (A)
 - (B) NaOH, KOH, NH₄OH, Ca(OH)₂.
 - H₂SO₄ HNO₃ HCl NH₃. (C)
 - (HNO₃, CH₃COOH, CH₃CH₂COOH. (D)

- The solubility of PbCl₂ is: 14.
 - $1.6 \times 10^{-8} M$ (A)

$$1.6 \times 10^{-8} \,\mathrm{M}$$
 Pb C12(5) = Pb2+ (ag) + 2 C1- (ag)
 $4.0 \times 10^{-8} \,\mathrm{M}$

- (B) 0.0040 M (C)
- $1.6 \times 10^{-5} M$ (D)
- $(0.016 \,\mathrm{M})$ (E)
- Ksp= 1,6x10 = [Pb2+][C1-]2

X= 0.016 = solubility of PbClz

- A solution was made 0.40 M in [Pb²⁺] and 0.40 M in [F-]. $\chi_{3p} = 3.6 \times 10^{-8}$ 15.
 - A precipitate will form. (A)
 - A precipitate will not form. (B)

Q>K Therefore, a solid precipitate will form

Consider the combustion of acetylene, C_2H_2 : 16.

(A)
$$\Delta H = (+), \Delta S = (+), \text{ and } \Delta G = (-)$$

(B)
$$\Delta H = (+), \Delta S = (-), \text{ and } \Delta G = (-)$$

(C)
$$\Delta H = (-), \Delta S = (+), \text{ and } \Delta G = (-)$$

(C)
$$\Delta H = (-)$$
, $\Delta S = (+)$, and $\Delta G = (-)$
(D) $\Delta H = (-)$, $\Delta S = (-)$, and $\Delta G = (-)$

$$C_2H_2(g) + 5/2 O_2(g) \rightarrow 2 CO_2(g) + H_2O(g)$$

Combustion - exothermic AH= (-)

17.	Which	of the	following	statements	is true?
1/.	W HICH	or me	Billwompi	Statements	15 u u c :

- All endothermic processes which result in a system of greater disorder are spontaneous. (A)
- All endothermic processes which result in a system of greater order are spontaneous. (B)
- All exothermic processes which result in a system of greater disorder are spontaneous. (C)
- All exothermic processes which result in a system of greater order are spontaneous. (D)

Consider the "cold pack" reaction: NH_4NO_3 (s) $\rightarrow NH_4NO_3$ (aq). 18.

 $\Delta H = (-), \Delta S = (+), \text{ and } \Delta G = (-)$ (A)

 $\Delta H = (-)$, $\Delta S = (-)$, and $\Delta G = (-)$ (B)

endothermic OH= (+)

(C)

 $\Delta H = (+), \Delta S = (+), \text{ and } \Delta G = (-)$ $\Delta H = (+), \Delta S = (-), \text{ and } \Delta G = (-)$ (D)

- 19. Consider the process: $H_2O(g) \rightarrow H_2O(l)$.
 - (A) $(\Delta S \text{ is negative})$

 ΔS is positive (B)

- Which of the following processes exhibits an increase in entropy of the system? 20.
 - NH_4NO_3 (aq) $\rightarrow NH_4NO_3$ (s) \times (A)

more disorder

 $H_2O(1) \rightarrow H_2O(s) \times$ (B)

(C)

 $\begin{array}{c} (H_2O(s) \rightarrow H_2O(g)) \\ 2NO_2(g) \rightarrow N_2O_4(g) \times & (2 \text{ moles going to } 1 \text{ mole gas}) \end{array}$ (D)

 $CH_3CH_2OH(g) \rightarrow CH_3CH_2OH(l) \times$ (E)

 $\Delta H = -144 \text{ kJ}$ and $\Delta S = -163 \text{ J/K}$ for a process. Determine the temperature in which the system 21. is at equilibrium?

(A)
$$19.0 \text{ K}$$

(B) 23.5 K
(C) 298 K

O= (-144 kJ)-(τ)-0.163 $\frac{\kappa 5}{K}$)

- (883 K) (D)
- 1900 K (E)

Given the following reactions: 22.

Fig.
$$N_2(g) + O_2(g) \rightarrow 2 \text{ NO } (g)$$

Fig. $2 \text{ NO } (g) + O_2(g) \rightarrow 2 \text{ NO}_2(g)$

$$\Delta S_1 = +23 \text{ J/K}$$

$$\Delta S_2 = -630 \text{ J/K}$$

DS = -235/K

 $\Delta S_3 = ?$

05; = +630 1/K

Calculate the change in entropy for:

$$2 \text{ NO}_2(g) \rightarrow \text{N}_2(g) + 2 \text{ O}_2(g)$$

(A)
$$\Delta S_3 = -584 \text{ J/K}$$

(B)
$$\Delta S_3 = +653 \text{ J/K}$$

(C)
$$\Delta S_3 = -653 \text{ J/K}$$

(D)
$$\Delta S_3 = +607 \text{ J/K}$$

(E) $\Delta S_3 = -607 \text{ J/K}$

(E)
$$\Delta S_3 = -607 \text{ J/K}$$

23. $\Delta H^{\circ} = -203 \text{ kJ}$ and $\Delta S^{\circ} = +371 \text{ J/K}$ for a process. Determine ΔG° at 300 K.

+151 kJ.

(B)

(D)
$$+591 \text{ kJ}.$$

(E)
$$-314 \text{ kJ}$$

(E)
$$-314 \text{ kJ}.$$

24.

Consider the process:
$$2 CO_2(g) \rightarrow 2 CO(g) + O_2(g)$$

D6 = - 314 KJ

- (A) ΔS is negative.
- ΔS is positive. (B)

- 25. Mars theories are in the news again (water, ice caps...) The worst thing about the pictures coming back from mars is:
 - (A) I've been staring at so much red lately, everything else I look at appears in the inverse color.
 - I've enjoyed them so much, I fell behind on my homework—for the first time ever. (B)
 - (C) no one wants to party. All my friends would rather wait by the computer for a new batch of images than play.
 - (D) I've spent over \$400.00 on ink jet cartridges this week.
 - they make me home sick. (E) [Any response will receive full credit; even no response.]