DO NOT OPEN THIS EXAM UNTIL INSTRUCTED. CALCULATORS ARE NOT TO BE SHARED.

Test Form 1

Instructions: You should have with you several number two pencils, an eraser, your $3^{\prime \prime} \times 5^{\prime \prime}$ note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number blank.

This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form in the appropriate stack. You may keep the exam packet, so please show your work and mark the answers you selected on it.

1. The pH of $0.020 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is:
(A) 0.020

$$
\mathrm{HCl} \underset{100 \%}{\longrightarrow} \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

(B) 70
$0.020 \mathrm{M} \mathrm{H}^{+}$
(C) 1.40
(D) 3.22
$p H=-\log \left[H^{+}\right]=-\log (0.020)=1.70$
(E) 13.98
2. The pH of $0.020 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ is:

$$
K_{a}=1.8 \times 10^{-5}=\frac{x^{2}}{0.020} \text { where } x=\left[H^{+}\right]
$$

(A) 0.020
(B) 1.70

$$
\begin{aligned}
& x^{2}=3.60 \times 10^{-7} \\
& x=\{H+\}=6.00 \times 10^{-4} \\
& P H=-\log \{H+\}=-\log \left(6.00 \times 10^{-4}\right)=3.22
\end{aligned}
$$

(C) 1.40
(D) 3.22
(E) 13.98
3. A student measures the pH of an aqueous solution to be 3.27. The $\left[\mathrm{OH}^{-}\right]$of this solution is:
(A) $1.86 \times 10^{-11} \mathrm{M}$
$\mathrm{PH}=3.27$
(B) 1826 M
$\mathrm{PH}+\mathrm{POH}=14$
(C) $5.37 \times 10^{-4} \mathrm{M}$
PAH: $14-\mathrm{PH}=14-3.27=10.73$
(D) $\quad 10.73 \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=10^{. \mathrm{paH}}=10^{-10.73}=1.86 \times 10^{-11} \mathrm{M}$
(E) $\quad-0.515 \mathrm{M}$
4. A student measures the pH of an aqueous solution to be 2.40. This solution is:
(A) acidic

(C) basic
acidic basic.
5. The pH of an aqueous system is measured to be 4.00 . The pOH of this system is:
(A) 4.00
(B) 7.00
(C) 3.00
(D) 10.00
(E) 11.00
$\mathrm{PH}=4.00$
$P O H=14.00-4.00=10.00$

The pH of a buffer system which is
6. The pH of a buffer system which is
$0.225 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})$ and $0.225 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}(\mathrm{aq})$ is 4.88 .

The pH of a buffer system which is $0.225 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})$ and $0.450 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}_{\text {B AS }}(\mathrm{aq})$ is:
Acis base
(A) 4.88
(B) $\begin{aligned} & \text { greater than } 4.88 \\ & \text { (C) less than } 4.88\end{aligned}$
(A) 4.88
(B) $\begin{aligned} & \text { greater than } 4.88 \\ & \text { (C) less than } 4.88\end{aligned}$
(A) 4.88
(B) $\begin{aligned} & \text { greater than } 4.88 \\ & \text { (C) less than } 4.88\end{aligned}$
7. Consider $\mathrm{HCl}_{2} \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{ClCOOH}$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$. The strongest acid is:
(A) HCl strong Acid
(B) $\mathrm{CH}_{3} \mathrm{COOH}$.
(C) $\mathrm{CH}_{2} \mathrm{ClCOOH}$. Weak acids
(D) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$.

Higher pH than 4.88

$$
\text { (D) } \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} . \quad J
$$

8. Methylamine (pictured below) has a lone pair of electrons on the nitrogen, can accept a proton, and is in equilibrium with methylammonium ion in water.

methylamine
methylammonium ion
Methylamine is:
(A) a strong acid
(B) a weak acid
(C) a strong base
(D) a weak base \rightarrow weak because of equilibrium arrows
(E) nether an acid or a base base because it accepts a protons
9. A student titrates 0.3400 grams of KHP (potassium hydrogen phthalate; $\mathrm{MW}=204.2 \mathrm{~g} / \mathrm{mol}$) to the equivalence point with 23.05 mL of $\mathrm{NaOH}(\mathrm{aq})$. The concentration of the NaOH solution is:
(A) 13.84 M

$$
\frac{g_{K H P}}{M_{\text {KNT }} \text { KBP }}=M_{\mathrm{NaOHI}} V_{\mathrm{NaOH}}
$$

(B) 0.0722 M
(C) 0.3012 M
(D) 0.100 M

$$
\begin{aligned}
& \frac{0.3400 \mathrm{~g}}{204.29 / \mathrm{mol}}=\left(M_{\mathrm{mH} .0 \mathrm{H}}\right)(0.02305 \mathrm{~L}) \\
& M_{\mathrm{NaOH}}=0.0722 \mathrm{M}
\end{aligned}
$$

10. Consider the reaction of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and water. The conjugate base is:

11. The pH of 1.00 M ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$, is:
(A) Greater than 7.00.
(B) 7.00 .
(C) Less than 7.00 .

lowers
pH
12. A student titrates 25.00 mL of $\mathrm{HCl}(\mathrm{aq})$ with 28.44 mL of 0.1025 M NaOH (aq) to reach the equivalence point. The concentration of $\mathrm{HCl}(\mathrm{aq})$ is:

13. Which of the following selections contains only acids?
(A) $\mathrm{HNO}_{3}, \mathrm{NaNO}_{3}, \mathrm{HCl}, \mathrm{NaCl}$.
(B) $\mathrm{NaOH}, \mathrm{KOH}, \mathrm{NH}_{4} \mathrm{OH}, \mathrm{Ca}(\mathrm{OH})_{2}$.
(C) $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{HNO}_{3}, \mathrm{HCl}_{2} \mathrm{NH}_{3}$.
(D) $\mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$.
14. The solubility of PbCl_{2} is:
(A) $1.6 \times 10^{-8} \mathrm{M}$

$$
\mathrm{PbCl}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Pb}_{x}^{2+}(\mathrm{ag})+\underset{2 x}{2 \mathrm{Cl}^{-}(a g)}
$$

(B) $4.0 \times 10^{-8} \mathrm{M}$
(C) $\quad 0.0040 \mathrm{M}$
(D) $\quad 1.6 \times 10^{-5} \mathrm{M}$

$$
\begin{array}{r}
K_{s p}=1,6 \times 10^{-5}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{2}\right]^{2} \\
(2 x)^{2}
\end{array}
$$

(E) 0.016 M

$$
\begin{aligned}
& 1.6 \times 10^{-5}=(x)(2 x)^{2} \\
& \frac{1.6 \times 10^{-5}}{4}=\frac{4 x^{3}}{4} \\
& x^{3}=4,00 \times 10^{-6} \\
& x=0.016=\text { solubility of } \mathrm{PbCl}_{2}
\end{aligned}
$$

$$
\mathrm{PbF}_{2}(s) \geqslant \mathrm{Pb}^{2+}(\mathrm{ag})+2 \mathrm{~F}^{\prime}(\mathrm{aq})
$$

15. A solution was made 0.40 M in $\left[\mathrm{Pb}^{2+}\right]$ and 0.40 M in $\left[\mathrm{F}^{-}\right] . \quad K_{3 p}=3.6 \times 10^{-8}$
(A) A precipitate will form.
(B) A precipitate will not form.

$$
\begin{aligned}
Q & =\left[\mathrm{Pb}^{2+}\right][F \cdot]^{2} \\
Q & =(0.40)(0.40)^{2}=0.064 \\
Q & >K \text { Therefore, a solid } \\
& \text { precipitate will form }
\end{aligned}
$$

16. Consider the combustion of acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}: \underbrace{\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g})} \rightarrow \underbrace{2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})}$
(A) $\Delta \mathrm{H}=(+), \Delta \mathrm{S}=(+)$, and $\Delta \mathrm{G}=(-)$
$3 \frac{1}{2}$ moles gas 3 molergas
(B) $\Delta \mathrm{H}=(+), \Delta \mathrm{S}=(-)$, and $\Delta \mathrm{G}=(-)$
(C) $\Delta \mathrm{H}=(-), \Delta \mathrm{S}=(+)$, and $\Delta \mathrm{G}=(-)$
(D) $\triangle \mathrm{H}=(-), \Delta \mathrm{S}=(-)$, and $\Delta \mathrm{G}=(-)$

$$
\begin{gathered}
\text { Combustion - exothermic } \\
\Delta H=(-)
\end{gathered}
$$

17. Which of the following statements is true?
(A) All endothermic processes which result in a system of greater disorder are spontaneous.
(B) All endothermic processes which result in a system of greater order are spontaneous.
(C) All exothermic processes which result in a system of greater disorder are spontaneous.
(D) All exothermic processes which result in a system of greater order are spontaneet.

$$
\begin{aligned}
& \Delta G=\Delta H-T \Delta S \\
& (-)=(-)-\left(+X_{+}\right)
\end{aligned}
$$

18. Consider the "cold pack" reaction: $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}$ (aq).
(A) $\quad \Delta \mathrm{H}=(-), \Delta \mathrm{S}=(+)$, and $\Delta \mathrm{G}=(-)$

(B) $\Delta \mathrm{H}=(-) \Delta \mathrm{S}=(-)$, and $\Delta \mathrm{G}=(-) \quad$ endothermic $\Delta H=(t)$
(C) $\Delta \mathrm{H}=(+), \Delta \mathrm{S}=(+)_{2}$ and $\Delta \mathrm{G}=(-\mathrm{D}$
(D) $\Delta \mathrm{H}=(+), \Delta \mathrm{S}=(-)$, and $\Delta \mathrm{G}=(-)$
19. Consider the process: $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
(A) Δ S is negative

(B) $\Delta \mathrm{S}$ is positive

20. Which of the following processes exhibits an increase in entropy of the system?
(A) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \times$

(B) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (s) \times
(C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(D) $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \times$ (2 moles going to 1 mole gas)
(E) $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (l) x
21. $\Delta \mathrm{H}=-144 \mathrm{~kJ}$ and $\Delta \mathrm{S}=-163 \mathrm{~J} / \mathrm{K}$ for a process. Determine the temperature in which the system is at equilibrium?
(A) 19.0 K
(B) 23.5 K
(C) 298 K
(D) 883 K
(E) 1900 K

$$
\Delta G=\Delta H-T \Delta S
$$

$0=(-144 \mathrm{~kJ})-(T)\left(-0.163 \frac{\mathrm{~kJ}}{\mathrm{k}}\right)$
(C) $298 \mathrm{~K} \quad T=883 \mathrm{~K}$
22. Given the following reactions:

$$
\begin{array}{ll}
\text { Flip } & \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) \\
\text { Flip } & 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
\end{array}
$$

$$
\Delta \mathrm{S}_{1}=+23 \mathrm{~J} / \mathrm{K}
$$

$$
\Delta \mathrm{S}_{2}=-630 \mathrm{~J} / \mathrm{K}
$$

1 flip $\rightarrow 2 \mathrm{NO}_{(9)} \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
2 flip $\rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
2 \mathrm{Flip} \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}^{(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~s})}
$$

$$
2 \mathrm{NO}_{2}(g) \rightarrow \mathrm{N}_{2}(9)+2 \mathrm{O}_{2}(g)
$$

$$
\begin{aligned}
& \Delta s_{1}^{\prime}=-23^{\mathrm{J}} / \mathrm{k} \\
& \Delta s_{2}^{\prime}=+630^{\mathrm{T}} / \mathrm{k} \\
& \Delta s_{3}=+607 \mathrm{~J} / \mathrm{k}
\end{aligned}
$$

Calculate the change in entropy for:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{S}_{3}=?
$$

(A) $\Delta \mathrm{S}_{3}=-584 \mathrm{~J} / \mathrm{K}$
(B) $\Delta \mathrm{S}_{3}=+653 \mathrm{~J} / \mathrm{K}$
(C) $\Delta \mathrm{S}_{3}=-653 \mathrm{~J} / \mathrm{K}$
(D) $\triangle \mathrm{S}_{3}=+607 \mathrm{~J} / \mathrm{K}$
(E) $\Delta \widehat{\mathrm{S}_{3}}=-607 \mathrm{~J} / \mathrm{K}$
23. $\Delta \mathrm{H}^{\circ}=-203 \mathrm{~kJ}$ and $\Delta \mathrm{S}^{\circ}=+371 \mathrm{~J} / \mathrm{K}$ for a process. Determine $\Delta \mathrm{G}^{\circ}$ at 300 K .
(A) -151 kJ .
$\Delta G=\Delta H=T \Delta S$
(B) +151 kJ . $\Delta G=(-203 \mathrm{~kJ})-(300 \mathrm{k})(+0.371 \mathrm{~kJ} / \mathrm{k})$
(C) $\quad-591 \mathrm{~kJ}$.
(D) +591 kJ .
$\Delta 6=-314 \mathrm{~kJ}$
(E) -314 kJ .
24. Consider the process: $\underbrace{2 \mathrm{CO}_{2}(\mathrm{~g})} \rightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

25. Mars theories are in the news again (water, ice caps...) The worst thing about the pictures coming back from mars is:
(A) I've been staring at so much red lately, everything else I look at appears in the inverse color.
(B) I've enjoyed them so much, I fell behind on my homework-for the first time ever.
(C) no one wants to party. All my friends would rather wait by the computer for a new batch of images than play.
(D) I've spent over $\$ 400.00$ on ink jet cartridges this week.
(E) they make me home sick.
[Any response will receive füll credit; even no response.]

