DO NOT OPEN THIS EXAM UNTIL INSTRUCTED. CALCULATORS ARE NOT TO BE SHARED.

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your last name, first name, middle initial, and student identification number. Leave the test form number and class section number blank.

$\begin{gathered} 1 \\ \mathrm{H} \\ \text { Hydrogen } \\ 1.0079 \end{gathered}$																	He Helium 4.0026
3 Li Lithium 6.941	4 Be Beryllium 9.01218											5 B Boron 10.81	${ }^{6}$ Carbon 12.011	$\begin{gathered} 7 \\ \mathbf{N} \\ \text { Nitrogen } \\ 14.0067 \end{gathered}$	8 O Oxygen 15.9994	$\begin{gathered} 9 \\ \text { F } \\ \text { Fluorine } \\ 18.9984 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ \text { Neon } \\ 20.179 \end{gathered}$
11 Na Sodium 22.98977	$\begin{array}{\|c\|} \hline 12 \\ \mathbf{M g} \\ \text { Magnesium } \\ 24.305 \\ \hline \end{array}$											13 Al Aluminum 26.9815	14 Si Silicon 28.0855	15 P Phosphorus 30.97376	16 S Sulfur 32.06	17 Cl Chlorine 35.453	18 Ar Argon 39.948
$\begin{gathered} 19 \\ \mathbf{K} \\ \hline \begin{array}{c} \text { Potassium } \\ 39.0983 \end{array} \\ \hline \end{gathered}$	20 Ca Calcium 40.08	21 Sc Scandium 44.9559	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \text { Titanium } \\ 47.88 \end{gathered}$	$\begin{aligned} & 23 \\ & V \end{aligned}$ Vanadium 50.9415	$\begin{gathered} 24 \\ \mathrm{Cr} \\ \text { Chromium } \\ 51.996 \end{gathered}$	$\begin{gathered} 25 \\ \mathrm{Mn} \\ \text { Manganese } \\ 54.9380 \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ \text { Iron } \\ 55.847 \end{gathered}$	27 Co Cobalt 58.9332	28 Ni Nickel 58.70	29 Cu Copper 63.546	$\begin{gathered} 30 \\ \stackrel{30}{\mathrm{Zn}} \\ \text { Zinc } \\ 65.38 \end{gathered}$	31 Ga Gallium 69.72	32 Ge Germanium 72.59	33 As Arsenic 74.9216	34 Se Selenium 78.96		$\begin{gathered} 36 \\ \mathrm{Kr} \\ \text { Krypton } \\ 83.80 \end{gathered}$
		$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Ytrium } \\ 88.9059 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ \text { Zirconium } \\ 91.22 \\ \hline \end{gathered}$	41 Nb Niobium 92.9064	$\begin{gathered} 42 \\ \text { MO } \\ \text { Molybdenum } \\ 95.94 \end{gathered}$	43 Tc Technetium 98.906		45 Rh Rhodium 102.9055		$\begin{gathered} \hline 47 \\ \mathrm{Ag} \\ \text { Silver } \\ 107.868 \\ \hline \end{gathered}$	48 Cd Cadmium 112.41	$\begin{gathered} 49 \\ \text { In } \\ \text { Indium } \\ 114.82 \end{gathered}$	$\begin{gathered} \hline 50 \\ \mathrm{Sn} \\ \mathrm{Tin} \\ 118.69 \\ \hline \end{gathered}$			$\begin{gathered} 53 \\ \text { I } \\ \text { lodine } \\ \text { 126.9045 } \end{gathered}$	54 Xe Xenon 131.30
55 Cs Cesium 132.9054	56 Ba Barium 137.33	$57-71$ *Rare earths	72 Hf Hafnium 178.49		$\begin{gathered} 74 \\ \mathbf{W} \\ \text { Tungsten } \\ 183.85 \end{gathered}$	75 Re Rhenium 186:207	76 Os Osmiun 190.2	$\begin{gathered} 77 \\ \text { Ir } \\ \text { Iridium } \\ 192.22 \end{gathered}$	78 Pt Platinum 195.09	$\begin{gathered} 79 \\ \text { Au } \\ \text { Gold } \\ 196.9665 \end{gathered}$	80 Hg Mercury 200.59	$\begin{gathered} { }_{c}^{81} \\ { }_{\text {Thl }} \mathrm{Tl} 1 \\ 204.37 \end{gathered}$	82 Pb Lead 207.2	$\begin{gathered} 83 \\ \mathrm{Bi} \\ \text { Bismuth } \\ \text { 208.9804 } \end{gathered}$	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
Franeium (223)		89-103 ${ }^{\dagger}$ Actinides	104 Rf Rutherfordium (261)	105 Ha Hahnjum (262)	$\underset{\substack{106 \\ \mathrm{Se} \mathrm{~g} \\(263)}}{ }$	107 Ns Neilsbohrium (262)	108 Hs Hassium (265)	109 Mt Meitnerium (266)	$\begin{gathered} 110 \\ \ddagger \end{gathered}$ (269)	$\begin{gathered} 111 \\ \ddagger \end{gathered}$			114				

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Lanthanium	Cerium	Prasedymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Hotmium	Ertium	Thulium	Yuerrium	Lutetium
138.9055	140.12	140.9077	144.24	145	150.4	151.96	157.25	158.9254	162.50	164.9304	167,26	168.9342	173.04	174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Califomium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
227.0278	232.0381	231.0359	238.029	237.0482	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	259	262

Reduction Half-Reaction	$E^{\text {o }}$, volt
Acidic Solution	
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}(\mathrm{aq})$	+2.866
$\mathrm{O}_{3}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+2.075
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	+2.01
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.763
$\mathrm{MnO}_{4}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.51
$\mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.455
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.358
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.33
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.23
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.229
$2 \mathrm{IO}_{3}^{-}(\mathrm{aq})+12 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e}^{-} \rightarrow \mathrm{I}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.20
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.065
$\mathrm{NO}_{3}^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+0.956
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.800
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.771
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$	+0.695
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})$	+0.535
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.340
$\mathrm{SO}_{4}{ }^{--}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})$	+0.17
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.154
$\mathrm{S}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+0.14
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.125
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.137
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$	-0.277
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.440
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.763
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.676
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.356
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.713
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.84
$\mathrm{K}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{K}(\mathrm{s})$	-2.924
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.040
Basic Solution	
$\mathrm{O}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	+1.246
$\mathrm{OCl}^{-}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$	+0.890
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}(\mathrm{aq})$	+0.401
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.828

Selected Functional Groups:

Name	Condensed Formula	Description
alkene	$\mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2}$	contains a $\mathrm{C}=\mathrm{C}$ double bond
alkyne	RCECR	contains a $\mathrm{C} \equiv \mathrm{C}$ triple bond
alcohol	ROH	contains O singly bonded to a C and a H
thiol (thiol alcohol)	RSH	contains S singly bonded to a C and a H
Disulfide	SS	contains S singly bonded to an S
ether	ROR	contains O singly bonded to two C
aldehyde	RCHO	contains C doubly bonded to O and singly to H
ketone	RCOR	contains C doubly bonded to O and singly to two C
hemiacetal	ROCOHR	contains C singly bonded to O of ether and of alcohol
carboxylic acid	RCOOH	contains C doubly bonded to O and singly to O of OH
ester	RCOOR	contains C doubly bonded to O and singly to O
amine	N	contains N bonded to C and/or H
amide	RCONR	contains C doubly bonded to O and singly to N
aromatic		contains a flat six-member ring

Possibly Useful Information:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}[\mathrm{HCOOH}(\mathrm{aq})]=1.80 \times 10^{-4} \\
& \mathrm{~K}_{\mathrm{a}}\left[\mathrm{CH}_{2} \mathrm{ClCOOH}(\mathrm{aq})\right]=1.40 \times 10^{-3} \\
& \mathrm{~K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]=1.80 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{a}}\left[\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}(\mathrm{aq})\right]=3.0 \times 10^{-4} \\
& \mathrm{~K}_{\mathrm{a}}\left[\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})\right]=5.6 \times 10^{-10} \\
& 1 \mathrm{Amp}=1 \text { Coulomb/second } \\
& \mathrm{K}_{\mathrm{a}}\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})\right]=6.30 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{b}}\left[\mathrm{NH}_{3}(\mathrm{aq})\right]=1.80 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{a}}\left[\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}(\mathrm{aq})\right]=8.00 \times 10^{-5} \\
& \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
& \text { F }=96,485 \text { Coulombs } / \text { mole } e^{-} \\
& \mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23}
\end{aligned}
$$

 Arginine	 Glutamine	 Phenylalanine (Phe / F)	 Tyrosine (Tyr / Y)	 Tryptophan (Trp, W)
		 Alanine (Ala/A)	 Histidine (His / H)	
	Glutamic Acid ($\mathrm{Glu} / \mathrm{E}$)	Aspartic Acid (Asp/D)	Threonine (Thr / T)	Cysteine (Cys / C)
 Methionine (Met/M)		 Asparagine (Asn / N)		 Valine ($\mathrm{Val} / \mathrm{V}$)

1. The pH of 0.250 M nitric acid, HNO_{3} (aq), is:

(A) 0.250 (B) 1.250 (C) $0.602)$	$\mathrm{HNO}_{3}(\mathrm{aq}) \xrightarrow{100 \%} \mathrm{H}^{+}(\mathrm{ag})+\mathrm{NO}_{3}^{-}(\mathrm{ag})$	
(D)	12.75	0.250 m
(E)	13.40	$P H=-\log [H+]=-\log (0.250)=0.602$

2. The pH of 0.330 M chloroacetic acid, $\mathrm{CH}_{2} \mathrm{ClCOOH}(\mathrm{aq})$, is:
(A) 13.52
(B) 0.482
(C) 3.34
(D) 1.67
(E) 0.0215

3. The pH of a buffer system which is
$0.225 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})$ and $0.225 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}(\mathrm{aq})$ is 4.88 .
The pH of a buffer system which is
$0.450 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})$ and $0.225 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}(\mathrm{aq})$ is:
(A) 4.88
(B) greater than 4.88

More acid - lower pt l
(C) less than 4.88
4. A student titrates 1.000 gram of KHP (potassium hydrogen phthalate $\mathrm{MW}=204.2 \mathrm{~g} / \mathrm{mol}$) to the equivalence point with 45.75 mL of $\mathrm{NaOH}(\mathrm{aq})$. The concentration of the NaOH solution is:
(A) 0.09733 M
(B) 0.1018 M
(C) 0.1070 M
(D) 4.671 M
(E) $\quad 9.342 \mathrm{M}$

$$
\begin{aligned}
\text { moles }_{\mathrm{NaOH}} & =\text { moles }_{\mathrm{KHP}} \\
M_{\mathrm{NaOH}} V_{\mathrm{NaOH}} & =\frac{\text { mass }_{\mathrm{KHP}}}{M_{\text {alar }} \text { Mass }_{\mathrm{MHP}}} \\
\left(M_{\mathrm{NMOH}}\right)(0.04575 \mathrm{~L}) & =\frac{1.000 \mathrm{~g}}{204.29 / \mathrm{mol}} \\
M_{\text {NaH }} & =0.1070 \mathrm{M}
\end{aligned}
$$

5. The pH of 1.00 M sodium acetate, $\mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq})$, is:
(A) Greater than 7.00 .
(B) Less than 7.00
(C) 7.00.

$$
\begin{aligned}
& \mathrm{Base}^{\perp} \\
& \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{ag})+\mathrm{H}^{+}(\mathrm{ag}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})
\end{aligned}
$$

(C) 7.00 .
6. Methylamine (pictured below) has a lone pair of electrons on the nitrogen, can accept a proton, and is in equilibrium with methylammonium ion in water.

methylamine
methylammonium ion
Methylamine is:
(A) a strong acid
(B) a weak acid
(C) a strong base \leftarrow equilibrium proton
(E) neither an acid or a base
7. Which of the following processes exhibits an increase in entropy of the system?
(A) $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
V going to greater disorder
(B) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}$ (ag)
(C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
(D) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}$ (l)
(E) $\quad \mathrm{H}_{2} \mathrm{O}$ (l) $\rightarrow \mathrm{H}_{2} \mathrm{O}$ (s)
8. Which of the following statements is true?
(A) All endothermic processes which result in a system of greater disorder are spontaneous.
(B) Allendothermic processes which result in a system of greater order are spontaneous.
(C) All exothermic processes which result in a system of greater disorder are spontaneous.
(D) All exothermic processes which result in a system of greater order are spontaneous.

$$
\begin{aligned}
& \Delta G=\Delta H-T \Delta S \\
& (-)=(-)-(+X+) \\
& (-) \text { Always if exothermic and greater disorder } \\
& \text { Spontaneous }
\end{aligned}
$$

9. $\Delta \mathrm{H}=-144 \mathrm{~kJ}$ and $\Delta \mathrm{S}=-163 \mathrm{~J} / \mathrm{K}$ for a process. Determine the temperature in which the system is at equilibrium?
(A) 19.0 K
(B) 23.5 K
(C) 298 K

$$
\Delta G=\Delta H-T \Delta S
$$

(D) 883 K
(E) 1900 K

$$
T=883 \mathrm{~K}
$$

10. The $\mathrm{K}_{\text {sp }}$ for PbI_{2} is 7.14×10^{-9}. The solubility of PbI_{2} is:
(A) $1.96 \times 10^{-11} \mathrm{M}$
(B) $1.96 \times 10^{-8} \mathrm{M}$
(C) $1.96 \times 10^{-7} \mathrm{M}$
(D) $2.14 \times 10^{-4} \mathrm{M}$
(E) $1.21 \times 10^{-3} \mathrm{M}$

$$
\begin{aligned}
& \mathrm{PbI}_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Pb}^{2+}(0 \mathrm{og})+2 I^{-}(08) \\
& K_{s p}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}=(x)(2 x)^{2}=4 x^{3} \\
& 7.14 \times 10^{-9}=4 x^{3} \\
& x=\text { solubility }=1.21 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

11. The oxidation number of each molybdenum in $\mathrm{CaMo}_{2} \mathrm{O}_{7}$ is:
(A) +2 .
(B) +3 .
(C) +4 .

(D)
(E)
$\stackrel{+5}{+6 .}$

12. Consider $\mathrm{Co}^{2+}(\mathrm{aq}), \mathrm{Pb}^{2+}(\mathrm{aq}), \mathrm{Cu}^{2+}(\mathrm{aq}), \mathrm{Ag}^{+}(\mathrm{aq})$, and $\mathrm{Li}^{+}(\mathrm{aq})$. The strongest oxidizing agent is:
(A) $\mathrm{Co}^{2+}(\mathrm{aq})$.
(B) $\mathrm{Pb}^{2+}(\mathrm{aq})$.
(C) $\mathrm{Cu}^{2+}(\mathrm{aq})$.
(D) $\mathrm{Ag}^{+}(\mathrm{aq})$.
(E) Li^{+}(aq).

13. A student provides a current of 3.25 amps through an aqueous solution of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ for 5.00 hours. The voltage is such that aluminum metal is deposited at the cathode. The mass of aluminum deposited is:

14. oxidized (lost e^{-})
15. Consider the reaction $\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{1 / 2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$. Which of the following statements is true?

(A) Zn (s) is reduced, it is gaining electrons.
(B) $\mathrm{Cu}^{2+}(\mathrm{aq})$ is reduced, it is gaining electrons.
(C) $\mathrm{Zn}(\mathrm{s})$ is reduced, it is losing electrons.
(D) $\mathrm{Cu}^{2+}(\mathrm{aq})$ is reduced, it is losing electrons.
16. The calculated cell potential (voltage) for the $2 \mathrm{Li}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$ is:
(A) +0.340 V
(B) +2.700 V
$\mathrm{Cu}^{2+}+\mathrm{Ze}^{-} \rightarrow \mathrm{Cu}^{\circ}$ $\varepsilon^{\circ}(v)$
(C) +3.040 V
(D) +3.380 V
(E) +5.906 V
$\mathrm{Li}^{+}+\mathrm{Ie}^{-} \rightarrow \mathrm{Li}^{\circ}$
-3.040
difference is
$+3.380 \%$

$$
\begin{aligned}
& \text { Do not multiply Li } x 2 \text { for } \\
& \text { voltage }
\end{aligned}
$$

16. Consider fuel cells. Which of the following is false?
(A) A hydrogen fuel cell produces energy.
(B) The hydrogen fuel cell demonstrated in class produced water.
(C) The hydrogen fuel cell demonstrated in class contains platinum to facilitate the process.
(D) The fuel cell consists of tiny chambers that allow hydrogen gas to explode.
(E) The hydrogen fuel cell demonstrated in class input hydrogen andoxygengases.
17. When the reaction $\mathrm{Fe}(\mathrm{s})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cr}^{2+}(\mathrm{aq})+\mathrm{Fe}^{3+}(\mathrm{aq})$ is correctly balanced in acid,
(A) 3 protons $\left(\mathrm{H}^{+}\right)$are consumed.
(B) 7 protons $\left(\mathrm{H}^{+}\right)$are consumed.
(C) 8 protons $\left(\mathrm{H}^{+}\right)$are consumed.
(D) 12 protons $\left(\mathrm{H}^{+}\right)$are consumed.
(E) 42 protons $\left(\mathrm{H}^{+}\right)$are consumed.

$$
8 \mathrm{Fe}^{\circ}+24 \mathrm{e}^{-}+42 \mathrm{H}+3 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 8 \mathrm{Fe}^{3+}+24 e^{-}+6 \mathrm{Cr}^{2+}+21 \mathrm{H}_{2} \mathrm{O}
$$

18. When a beta particle is emitted,
(A) An electron is converted to a helium nucleus.
(B) A gamma ray is released.
(C) Two gamma rays are released.
(D) A proton is converted to a neutron.
(E) A neutron is converted to a proton.

19. Am-243 decays to produce a beta particle and \qquad .
(A) $\mathrm{Cm}-243$
(B) Am-242
${ }_{95}^{243} A_{M} \rightarrow{ }_{-1}^{0} \beta+{ }_{96}^{243} C_{M}$
(C) Am-245
(D) $\quad \mathrm{Np}-243$
(E) $\quad \mathrm{Np}-241$
20. Ra-226 decays to produce an alpha particle and \qquad .
(A) $\mathrm{Rn}-222$
(B) $\mathrm{Rn}-226$
$\begin{gathered}226 \mathrm{Ra}\end{gathered}{ }_{88}{ }^{4} \alpha+{ }_{2}^{222} \mathrm{Rn}$
(C) $\mathrm{Fr}-226$
(D) $\mathrm{Fr}-222$
(E) $\quad \mathrm{Po}-222$
21. A student obtains a sample of $\operatorname{Sr}-90\left(\mathrm{t}_{1 / 2}=28.5\right.$ years $)$ containing 50,000 atoms. How long will it take for the sample to decay to 1880 atoms of $\operatorname{Sr}-90$?
(A) 135 years
(B) 151 years
(C) 162 years
(1) Calck $\ln \frac{1}{2}=-k(28.5 y)$
(D) 302 years
(E) 1880 years
(2) Calct
$\ln \left(\frac{1880 \text { atoms }}{50,000 \text { atoms }}\right)=-\left(0.0243 y^{-1}\right)(+)$

$$
+\cdot 135 y
$$

22. A radioactive decay series that begins with ${ }^{232} \mathrm{Th}$ ends with formation of the stable nuclide ${ }^{208} \mathrm{Bi}$. How many alpha particle emissions and how many beta particle emissions are involved in the sequence of radioactive decays?
(A) 7 alpha and 6 beta decays.
(B) 7 alpha and 5 beta decays.
(C) 7 alpha and 4 beta decays.
(D) 6 alpha and 2 beta decays.
(E) 6 alpha and $\$$ beta decays.

23. Considering the carbon cycle and radiocarbon dating, which of the following statements is false?
(A) The carbon-14 concentration in fossils is less than the carbon-14 concentration in you.
(B) Carbon-14 in living organisms does not undergo decay.
(C) Carbon-14 can be used to date specimens previously in the carbon cycle.
(D) Carbon-14 is generated in the upper atmosphere.
24. Which of the following is NOT a Lewis base is the presence of a transition metal ion?
(A) OH^{-}
(B) F^{-}
(C) $\mathrm{H}_{2} \mathrm{O}$
(D) NH_{3}
(E) CH_{4}

No lone pairse"

25. The coordination number for Co^{3+} in $\left[\mathrm{CoCl}_{4} \mathrm{~F}_{2}\right]_{6}^{3-}$ is:
(A) 4
(B) 1
(C) 2
(D) 3
(E) (6)
26. The complex:

(A) is cis- $\left[\mathrm{CuCl}_{3} \mathrm{~F}_{3}\right]^{4-}$.
(B) is trans- $\left[\mathrm{CuCl}_{3} \mathrm{~F}_{3}\right]^{4-}$.
(C) is face $\left[\mathrm{CuCl}_{3} \mathrm{E}_{3}\right]^{4^{-}}$.
(D) is mar- $\left[\mathrm{CuCl}_{3} \mathrm{~F}_{3}\right]^{4-}$.
(E) is world-cup-fever- $\left[\mathrm{CuCl}_{3} \mathrm{~F}_{3}\right]^{4-}$.
27. How many unpaired electrons are present in $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$?
[Mn is the Mn^{2+} ion; CN is the CN^{-}ion; and the Mn^{2+} is low spin]. $\mathrm{Mn}^{2+} ; d^{5}(7-2)$

(E) 5
28. A compound having the chemical formula $\mathrm{C}_{250} \mathrm{H}_{500}$ is:
(A) an alkane
alkene $\mathrm{C}_{n} \mathrm{H}_{\text {In }}$
(B) an alkene
(C) an alkyne
(D) an aldehyde
(E) an alcohol
29. When an amine and a carboxylic acid react in a condensation reaction (such as two amino acids reacting):
(A) an ester is formed.
(B) an alkane is formed.
(C) an alkene-is formed

(D) an amide is formed.
(E) an alcohol is formed.

30. The systematic name of:

(A) is 5-isopropyl-2-ethylpentane
(B) is 2,6-dimethyloctane
(C) is 6-ethyl-2-methylheptane
(D) is 3-ethyl-6-dimethyloctane
(E) is 2-ethyl-6-methylheptane
31. Identify the functional groups in the following molecule:

(A) aldehyde, alcohol, ester, amine
(B) aldehyde, alcohol, ether, amine
(C) carboxylic acid, amine, ether, alcohol
(D) ketone, alcohol, ester, amine
(E) ester, carboxylic acid, alcohō, amine
32. The following is the structure of galactose. Which of the following statements is false:

(A) The structure shows D- galactose
(B) Galactose is an aldohexose
(C) Galactose has 5 chiral carbons $0 n l y 4$
(D) It can form a ring structure
(E) It is a carbohydrate
33. Consider the fat molecule below. Which of the following is false?

(A) It is an omega-3 fat
(B) It is unsaturated $C=C$
(C) It contains cis bonds
(D) It contains trans bonds
(E) It could not occur naturally because the top carbon chain only has one double bond
34. An isomer of 2-butanol is:
(A) 1-butanol
(B) 2-butane
(C) 2-methylbutane
(D) 1-methylbutane
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}^{\mathrm{OH}}$
(E) 2-methylpropane
35. The organic product of benzene and
 in the presence of AlCl_{3} is:

(B)

(C)

(D)

36. OSU Softball went to the College World Series a couple of weeks ago. OSU Baseball is currently at the College World Series and begins play against Miami on Saturday afternoon. The eight teams vying for the championship are Clemson, Georgia Tech, Cal State Fullerton, North Carolina, Rice, Georgia, Oregon State, and Miami. Who do you predict to win?
(A) Oregon State
(B) Oregon State
(C) Oregon State
(D) Oregon State
(E) Oregon State
[Any response will receive full credit; even no response.]
Questions 1 through 35 have four points attached (140 total). Any response to Question 36 will receive full credit (5 Points); even no response. The point total for this exam is $\mathbf{1 4 5}$ points. See the grade sheet or CH 123 web syllabus for grade computation details. Final exam keys, scores, and course grades will be posted on the CH 123 website as they become available. Have a great life. Go out there and do some really cool stuff :)

