Chemistry 122
Final Exam

Winter 2007
March 19, 2007

Oregon State University
Dr. Richard Nafshun

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 37 multiple-choice questions. Each question has four points associated with it (Question 37 has six). Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form in the appropriate stack and present your University ID Card to the proctor. You may keep the exam packet, so please show your work and mark the answers you selected on it.

	$\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$					$760 \mathrm{~mm} \mathrm{Hg}=760 \text { torr }=1 \mathrm{~atm}$						$\mathrm{m}=\mathrm{mol} / \mathrm{kg}$					
	$\mathrm{M}=\mathrm{mol} / \mathrm{L}$					$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{imk}_{\mathrm{f}}$						$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{imk}_{\mathrm{b}}$					
	IV	= nRT				$\mathrm{k}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86{ }^{\circ} \mathrm{C} / \mathrm{m}$						$\mathrm{k}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.512^{\circ} \mathrm{C} / \mathrm{m}$					
1 Hy Hydogen 1.0079	$\ln \left[\frac{A}{A_{0}}\right]=-k t$					$k=A e^{\frac{-E a}{R T}}$						$\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$					
${ }^{3}$ Li Libium 6.941	 4 Be Berylium 9.0128											$\begin{gathered} \text { 5 } \\ \text { B } \\ \text { Boron } \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \text { Carton } \\ \text { Cron } \\ \hline 12.011 \end{gathered}$	$\begin{array}{\|c} 7 \\ \mathbf{N} \\ \text { Nitrogen } \\ \text { } \\ \hline \end{array}$	$\begin{gathered} 8 \\ 0 \\ \begin{array}{c} \text { Oxygen } \\ \text { O.9994 } \end{array} \\ \hline \end{gathered}$		$\begin{gathered} 10 \\ \mathrm{Ne} \\ \text { Neon } \\ 20.179 \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ \text { sodium } \\ 22.8897 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ \begin{array}{c} \text { Magnesium } \\ 24.305 \end{array} \\ \hline \end{gathered}$											$\begin{gathered} 13 \\ \mathrm{Al} \\ \text { Aluminum } \\ 26.8815 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 14 \\ & \hline \mathrm{Si} \\ & \text { Slicion } \\ & \text { Sis.oss } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 15 \\ \text { P } \\ \text { Phosphorus } \\ \text { 30.97376 } \\ \hline \end{array}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ \text { Sulfur } \\ 3206 \\ 3206 \end{gathered}$	$\begin{array}{\|c\|c\|} \hline 17 \\ \mathrm{Cl} \\ \text { Chlorine } \\ \hline \end{array}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ \text { Argon } \\ 39.98 \\ \hline \end{gathered}$
$\begin{array}{\|c\|} \hline 19 \\ \mathbf{K} \\ \text { Potassium } \\ \text { 33.0983 } \end{array}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \text { Calcium } \\ 40.08 \\ 4 \end{gathered}$	$\begin{array}{\|c} \hline 21 \\ \mathrm{Sc} \\ \text { Scandium } \\ \text { 4.95s9 } \\ \hline \end{array}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \substack{22 \\ \text { Titanium } \\ 47.88 \\ \hline 4 \\ \hline \\ \hline} \end{gathered}$	$\begin{array}{\|c\|} \hline 23 \\ \mathrm{~V} \\ \text { Vanadium } \\ \text { so.4415 } \\ \hline \end{array}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ \text { Chromium } \\ \text { st.996 } \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ \mathrm{Mn} \\ \mathrm{Manganese} \\ \text { S4, } 9380 \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \\ & \text { reve } \\ & 55.847 \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \\ & \text { Cobal } \\ & 58,932 \\ & \hline \end{aligned}$	28 Ni Nickl1 s.7.	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { Coper } \\ \text { Cospar } \\ \hline .36 \end{gathered}$		31 Ga Callium 6972	32 Ge Cemanium 27s9	33 As Ansenic 74.9216	$\begin{array}{\|c} \hline 34 \\ \begin{array}{c} 34 \\ \text { Selenium } \\ \text { 78.96} \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 35 \\ \hline \mathrm{Br} \\ \hline \begin{array}{c} \text { Bromine } \\ \text { P9.904 } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{gathered} 36 \\ \begin{array}{c} 36 \\ \text { Krppon } \\ 83.80 \\ \hline \end{array} \\ \hline \end{gathered}$
37 Rb Rubidium B5.4678	38 Sr Suonium 87.62		40 Zr Zireonium 9.122	$\begin{array}{\|c} \hline 41 \\ \mathrm{Nb} \\ \text { Niobur } \\ \text { Non } \\ \text { 92.006 } \end{array}$		43 Tc Technetium 98.906		45 Rh Rhodium 102.205s	$\substack{46 \\ \mathrm{Pd} \\ \text { Palasdium } \\ 106.4}$	47 Ag Ag Siver 107.868	$\begin{array}{\|c\|} \hline 48 \\ \mathrm{Cd} \\ \text { Cadmuin } \\ \hline 112.41 \\ \hline \end{array}$	$\begin{aligned} & 49 \\ & \text { In } \\ & \text { Indium } \\ & \text { Ind } \\ & \hline 14.82 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ \text { Sn } \\ \begin{array}{c} \text { Tin } \\ 113.69 \end{array} \end{gathered}$	$\begin{array}{\|c\|} \hline 51 \\ \mathrm{Sb} \\ \text { Antimany } \\ \text { 121.75 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 52 \\ \mathrm{Te} \\ \text { Tellurium } \\ \text { 127.60 } \\ \hline \end{array}$	53 I I Iadine 126.0as	(${ }_{\text {S4 }}$
55 Cs cesium 132.9054	56 Ba Barium 137.33	${ }_{\text {Rexe eaths }}$	$\substack{72 \\ \mathbf{H f} \\ \text { Hafrium } \\ 178.49}$		74 $\underset{\substack{7 \\ \text { Tungsen } \\ 183.85}}{ }$	75 Re Reneium 186207	76 Os Osmium 1902	$\underset{\substack{77 \\ \text { Ir } \\ \text { Indium } \\ \text { i92.22 }}}{\substack{\text { In } \\ \hline}}$	$\begin{array}{\|c\|c} 78 \\ \text { Pt } \\ \text { Plasium } \\ \text { Pas.99 } \end{array}$	79 Au Au Gold 19.9665	$\begin{array}{\|c} 80 \\ \mathbf{H g} \\ \text { Meruy } \\ \text { mexy } \\ \hline \end{array}$	$\begin{gathered} 81 \\ \mathrm{Tl} \\ \begin{array}{c} \text { Thallium } \\ \text { Ta4.37 } \\ \hline 20 . \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \\ & \text { Ledo } \\ & 200.2 \end{aligned}$	$\begin{array}{\|c\|} \hline 83 \\ \mathrm{Bi} \\ \text { Bismuth } \\ 208.9804 \\ \hline \end{array}$		85 At Asaline (210)	86 Rn Radon Red (22)
87 Fr Francium (223)		${ }_{\text {A Acinides }}{ }^{89-103}$	104 Rf Rulterfordium (261) e	105 Ha Hamium (262)		107 Ns $\substack{\text { Neilsborium } \\ (z 262)}$	108 Hs Hassum (255)	109 Mt $\substack{\text { Meituerium } \\ \text { (266) }}$	$\stackrel{110}{\ddagger}$ (269)	$\stackrel{111}{\ddagger}$			114				

$\begin{gathered} 57 \\ \mathrm{La} \\ \text { Lanthanium } \\ \text { i38.905s } \end{gathered}$	58 Ce Cerium 140.12	59 Pr Pracedymium 140.9077	$\begin{gathered} { }^{60} \\ \mathrm{Nd} \end{gathered}$ Neodymium 144.24	$\begin{gathered} 61 \\ \mathrm{Pm} \\ \substack{\text { Promethium } \\ 145} \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \\ \text { Samarium } \\ 150.4 \end{gathered}$	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Teribium 158.9254	$\begin{gathered} 66 \\ \text { Dy } \\ \text { Dysprosium } \\ 162.50 \end{gathered}$	67 Но Holmium 164.9304	68 Er Erbium 167,26	69 Tm Thulium 168.9342	$\begin{gathered} 70 \\ \mathrm{Yb} \\ \text { Yuterbium } \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu} \\ \text { Lutectium } \\ 174.967 \end{gathered}$
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protactioium	Uranium	Nepunium	Plutonium	Americium	Curium	Berkelium	Califonium	Einsteinium	Fermium	Mendelevium	Nobelium	Lewrencium
227.0278	232.0381	231.0399	238.029	237.0482	(244)	(243)	(247)	(247)	(251)	(234)	(257)	(288)	259	262

Please read each exam question carefully. Terms such as correct, false, unpaired, pairs, H-C-F bond angle, H-C-H angle, greatest, and smallest are used.

Unit 1 Material (First assessed on Exam 1)

1. There are \qquad unpaired electrons in a ground-state nitride $\left(\mathrm{N}^{3-}\right)$ ion.
(A) 0
(C) 2
(D) 3
(E) 4
$E \int \quad \uparrow \downarrow \frac{\uparrow \downarrow}{2 s} \frac{\uparrow \downarrow}{2 p}$

$$
\frac{\uparrow \downarrow}{15}
$$

$$
\begin{aligned}
& N-7 e^{-} \\
& N^{3-}-10 e^{-}
\end{aligned}
$$

2. The ground-state electron configuration of a fluoride ion (F^{-}) is:
(A) $1 s^{2} 2 s^{2} 3 s^{2} 3 p^{2}$
(B) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{~s}^{1}$
(C) $1 s^{2} 2 s^{2} 2 p^{4}$
(D) $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
(E) $\mathrm{s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
E

$$
1 s^{2} 2 s^{2} 2 p^{6}
$$

x
()

Consider $\mathrm{Al}^{3+}, \mathrm{Al}, \mathrm{F}^{-}$, and F . Which of the following statements is correct?
(A) Al^{3+} is smaller than AI
Al 3+ has these fewer e- than Al
(B) F^{-}is smaller than F
F^{-}has one more e^{-}than f
4. The Lewis Dot Structure of PH_{3} depicts:
(A) There are no lone pairs of electrons
(B) There is one lone pair of electrons

(C) There are two lone pairs of electrons
(D) There are three lone pairs of electrons
(E) There are four lone pairs of electrons
5. The oxygen-oxygen bond order in ozone $\left(\mathrm{O}_{3}\right)$ is:
(A) 1.00
(B) 1.33
(C) 1.50
(D) 1.75

(E) 2.00

$$
\frac{3 \text { bands }}{2 \text { tacations }}=1.5
$$

6. The $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in ammonia $\left(\mathrm{NH}_{3}\right)$ is:
(A) 90°
(B) 120°

(C) 109.5°
(D) A little greater than 109.5°
(E) A little less than 109.5°
7. The oxygen-carbon-oxygen bond angle in CO_{2} is:
(A)
(B) 120°
(C) 109.5°
oo:: : : : :
(D) A little greater than 109.5°
(E) A little less than 109.5°
8. The C-O-H bond angle in ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, is:
(A) 90°
(B) 120°
(C) 109.5°
(D) A little greater than 109.5°
(E) little less than 109.5°

9. The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in monofluoromethane $\left(\mathrm{CH}_{3} \mathrm{~F}\right)$ is a little greater than 109.5°. This deviation from the ideal bond angle of 109.5° can be attributed to:
(A) Lone pairs of electrons on carbon
(B) The electronegativity of fluorine
(C) Hydrogen bonding
(D) Sublimation
(E) Global warming

10. Consider ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$. Draw the structure of ethyne. Ethyne contains:
(A) no π-bonds.
(B) one π-bond.
(C) two π-bonds.
(D) three π-bonds.

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

11. Molecular orbital theory predicts the $\mathrm{O}_{2}{ }^{2-}$ ion (a minus two charge) has a bond order of:
(A)
(B) 1.0
(C) 1.5
(D) 2.0
(E) 2.5
E

12. Consider MO (Molecular Orbital Theory). The N_{2} molecule is:

13. Consider the molecule below and identify the correct statement.

(A) There is one carbon that has an sp^{3} hybridization scheme.
(B) There are two carbons that have sp^{3} hybridization schemes.
(C) There are four carbons that have sp^{3} hybridization schemes.
(D) There are eight carbons that have sp^{3} hybridization schemes.
(E) There are thirteen carbons that have sp^{3} hybridization schemes.
14. The phase diagram below is for:
(A) $\mathrm{H}_{2} \mathrm{O}$
(B)

15. Consider the phase diagram below.

The transition indicated by the arrow is:
(A) Melting
(B) Boiling
(C) Sublimation
(D) Deposition
(E) Freezing
16. Ethane, $\mathrm{CH}_{3} \mathrm{CH}_{3}$, melts at $-172^{\circ} \mathrm{C}$. $\mathrm{Li}_{2} \mathrm{O}$ melts at $1570^{\circ} \mathrm{C}$. The difference in melting points can be attributed to:
(A) Different intermolecular forces (dispersion, dipole-dipole, hydrogen bonding)
(B) Different ionic charges
(C) Different distances between nuclei (d)
(D) Network covalent compounds
(E) One is a molecule (attractions by intermolecular forces), one is an ionic compound (attractions by charges)
17. Consider $\mathrm{NaF}, \mathrm{CaO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CaS}, \mathrm{He}$, and $\mathrm{CH}_{3} \mathrm{OCH}_{3}$. Arranged in increasing melting point, these are:

Lowest mp
Highest mp
(A) $\mathrm{NaF}<\mathrm{CaO}<\mathrm{CaS}<\mathrm{He}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{He}<\mathrm{NaF}<\mathrm{CaO}<\mathrm{CaS}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{He}_{4}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NaF}<\mathrm{CaO}<\mathrm{CaS}$.
(D) $\mathrm{He}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NaF}<\mathrm{CaS}<\mathrm{CaO}$.
(E) $\mathrm{He}<\mathrm{NaF}<\mathrm{CaS}<\mathrm{CaO}<\mathrm{CH}_{3} \mathrm{OCH}_{3}<\mathrm{H}_{2} \mathrm{O}$

18. Consider $\mathrm{CH}_{3} \mathrm{OCH}_{3}$. The intermolecular forces present in $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ are:
(A) Dispersion forces only
(B) Dispersion forces and dipole-dipole forces
(C) Dispersion forces, dipole-dipole forces, and hydrogen bonding
(D) Hydrogen bonding only
 bent (dipol e-dipole)
19. The product produced from the diol and dicarboxylic acid shown below is:

(C) A network covalent compound
(D) Quartz
(E) Soap
20. Which of the following compounds cannot undergo free radical polymerization?

21. The equivalent number of atoms in the FCC unit cell is:
(A) 1
(B) 2
(C) 3
(D)
(E)

22. The structure below [from Worksheet 6 During Recitation] represents:

(A) An SC unit cell
(B) ABCCunitcell
(C) A FCC unit cell
(D) A NCAA unit cell
(E) An OSU unit cell
23. The freezing point of 0.150 m aqueous CaCl_{2} is:
(A) $-0.279{ }^{\circ} \mathrm{C}$
(B) $-4.19^{\circ} \mathrm{C}$
$\Delta T_{f}=i m k_{f}=(3)(0.150 \mathrm{~m})\left(1.86^{\circ} \frac{\mathrm{c}}{\mathrm{m}}\right)=0.837^{\circ} \mathrm{C}$
(C) $-0.558^{\circ} \mathrm{C}$
(D) $\quad+100.279^{\circ} \mathrm{C}$
(E) $-0.837^{\circ} \mathrm{C}$
$T_{f}=0^{\circ} \mathrm{C}-0.837^{\circ} \mathrm{C}=-0.837^{\circ} \mathrm{C}$
24. A student ($\overbrace{}^{\circ}$) obtains an 80.0 gram sample of ${ }^{60} \mathrm{Co}$ ($\mathrm{t}_{1 / 2}=5.0$ years). How many grams of ${ }^{60}$ Co will remain after 15.0 years?
(A) 16.0 grams
(B) 8.0 grams
(C) 533 grams
(D) 10.0 grams
(E) 20.0 grams

25. A student $(\delta / 0)$ obtains an 80.0 gram sample of ${ }^{60} \mathrm{Co}\left(\mathrm{t}_{1 / 2}=5.0\right.$ years $)$. How long will it take so that only 50.0 grams of ${ }^{60} \mathrm{Co}$ remain?
(A) 30.0 years (1) Calck $\ln \frac{1}{2}=-k(5.0 \mathrm{y}) \quad k=0.1386 \frac{1}{y}$
(B) 50.0 years
(2) Cale t
$\ln \frac{509}{809}=-\left(0.1386 \frac{1}{y} Y(+) \quad 809\right.$
(D) 3.39 years
(E) 0.625 years

$$
-0.470=-\left(0.1386 \frac{1}{4}\right)(t)
$$

$$
t-3.39 y
$$

26. The following are initial rate data for: $\mathbf{A}+2 \mathbf{B} \rightarrow \mathbf{C}+2 \mathbf{D}$

Experiment	Initial [A]	Initial [B]	Initial Rate	
1	$0.10) \times 2$	${ }^{0.10}$	$(0.222) \times 4$	$4[A]$
2	$0.20<$	$0.10 x^{2}$	$\times 0{ }_{<}^{0.8882^{2}}$	
3	0.10	0.20	$\sqrt{ } 0.222$	(B

(A) The rate law is Rate $=\mathrm{k}[\mathrm{A}]^{1}[\mathrm{~B}]^{2}$
(B) Theras Rate $\equiv k[A]^{2}[B]^{1} \quad$ Rate $=k[A]^{2}[B]^{0}$
(C) The rate law is Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{0}$
(D) The rate law is Rate $=\mathrm{k}[\mathrm{A}]^{\circ}[\mathrm{B}]^{+}$
(E) The rate law is Rate $=\mathrm{k}[\mathrm{A}]^{1}[\mathrm{~B}]^{0}$
27. As the reaction proceeds, the rate:

28. Which graph could correctly depict the changes in concentrations for the reaction $2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{HNO}_{3}(\mathrm{aq})$?
(A)

(B)

moles

(C)
(D)

29. Which of the following statements is false?
(A) Increasing the temperature of a reaction will increase the rate.
(B) Increasing the number of collisions will increase the rate of reaction.
(C) Lowering the activation energy will increase the rate of reaction.
(D) The addition of a catalyst will decrease the rate of a process. The cat alyst will INCREASE
(E) The addition of a catalyst willower the activation mergyofa process. the rate (the rock you used in lab)
30. $\quad\left[\mathrm{NO}_{2}\right]^{2} \quad\left[\mathrm{O}_{2}\right] \quad[\mathrm{NO}]^{2}$
30. The equilibrium law expression for the reaction $\underset{\text { reactants }}{2 \mathrm{NO}_{2}(\mathrm{~g})} \Leftrightarrow \underset{\text { products }}{\mathrm{O}}(\mathrm{g})$ is:
reactant's products
(A) $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right][\mathrm{NO}]}{\left[\mathrm{NO}_{2}\right]^{2}}$
(B) $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right]^{2}[\mathrm{NO}]}{\left[\mathrm{NO}_{2}\right]^{2}}$
(C) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}}{\left[\mathrm{NO}_{2}\right]^{2}}$
(D) $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right][\mathrm{NO}]}{\left[\mathrm{NO}_{2}\right]}$
(E) $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}}$
31. Consider the system $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{SO}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=6.76$

A student prepares the system and measures:
$\left[\mathrm{SO}_{2}\right]=1.03 \mathrm{M} \quad\left[\mathrm{CO}_{2}\right]=1.22 \mathrm{M} \quad[\mathrm{CO}]=2.93 \mathrm{M} \quad\left[\mathrm{SO}_{3}\right]=2.90 \mathrm{M}$
(A) The system is at equilibrium.
(B) The system is not at equilibrium.

$$
\begin{aligned}
& K_{c}(\text { for experiment })=\frac{\left[\mathrm{CO}^{2}\left[\mathrm{SO}_{3}\right\}\right.}{\left[\mathrm{SO}_{2}\right]\left\{\mathrm{CO}_{2}\right\}}=\frac{(2.93)(2.90)}{(1.03)(1.22)}=6.76 \\
& K_{c} \text { (for experiment) }=K_{c} \text { (litaratnia) } \therefore \text { the system is at equilibrium }
\end{aligned}
$$

32. The following reaction is at equilibrium:

$$
2 \mathrm{HBr}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=+72 \mathrm{~kJ} \text { (endothermic) }
$$

(A) The concentration of $\mathrm{HBr}(\mathrm{g})$ increases when the system is heated.
(B) The concentration of $\mathrm{HBr}(\mathrm{g})$ decreases when the system is heated.
(C) The concentration of $\mathrm{HBr}(\mathrm{g})$ stays the same when the system is heated.

```
The process is endothermic (heat willl drive the reaction
                        to the right)
```

33. The following reaction is at equilibrium:

$$
2 \mathrm{HBr}(\mathrm{~g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=+72 \mathrm{~kJ} \text { (endothermic) }
$$

(A) The concentration of $\mathrm{Br}_{2}(\mathrm{~g})$ increases when $\mathrm{HBr}(\mathrm{g})$ is added.
(B) The concentration of $\mathrm{Br}_{2}(\mathrm{~g})$ decreases when $\mathrm{HBr}(\mathrm{g})$ is added.
(C) The concentration of $\mathrm{Br}_{2}(\mathrm{~g})$ stays the same when $\mathrm{HBr}(\mathrm{g})$ is added.
34. The pH of $0.050 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is:

35. A student obtains $0.175 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$. The "ICE" table used to solve the equilibrium expression for this weak acid is:
(A)

	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\rightleftarrows	$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
I	0	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$		
C	+x		0.175	0.175
E	x	+x	+x	
			$0.175+\mathrm{x}$	$0.175+\mathrm{x}$

(B)

	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\Longleftrightarrow	$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
I	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$			
C	0		0	0
E	-x	$+\mathrm{x} / 2$	$+\mathrm{x} / 2$	
	-x		x	x

(C)

	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\geq	$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
I	0.175			0	0
C	-X			$+\mathrm{x} / 2$	$+\mathrm{x} / 2$
E	0.175-x			$\mathrm{x} / 2$	$\mathrm{x} / 2$

(D)

	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$					$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
I	0.175	\ddots	0	0				
C	-x		+x	+x				
E	$0.175-\mathrm{x}$		x	x				

(E)

	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}$ (l)	$\overrightarrow{ }$	$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
I	0.175			0.175	0.175
C	-x			+x	+x
E	0.175-x			$0.175+\mathrm{x}$	$0.175+\mathrm{x}$

36. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ is a weak acid $\left(\mathrm{K}_{\mathrm{a}}=1.80 \times 10^{-5}\right)$. The pH of $0.175 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ is:
(A) 0.175

$$
\begin{aligned}
& K_{a}= 1.80 \times 10^{-5}=\frac{\text { products }}{\text { reactants }}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right\}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right\}}{\left\{\mathrm{CH}_{3} \mathrm{COO} 4\right\}}=\frac{x^{2}}{0.175-X^{04 t}} \\
& 1.80 \times 10^{-5}=\frac{x^{2}}{0.175} \\
& x^{2}=3.15 \times 10^{-6} \\
& x=0.00177=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{PH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right\}=-\log (0.00177)=2.75
\end{aligned}
$$

37. Well, well, well... CH 122 is over. Now it's time to:
(A) Participate in organized social gatherings. I'm headed to one right now.
(B) Drive hundreds of miles from here to find a sunny day.
(C) Check out the new Home Depot. Their they have molecule-patterned wallpaper in stock.
(D) Brush my teeth and change out of my pajamas.
(E) Two words: March Madness.
[Any response will receive full credit; even no response.]
Questions 1 through 36 have four points attached (144 total). Any response to Question 37 will receive full credit (6 Points total); even no response. The point total for this exam is $\mathbf{1 5 0}$ points. See the grade sheet for grade computation details. Final exam keys, scores, and course grades will be posted on the CH 122 website as they become available.
