Chemistry 122 Final Exam

# Winter 2007 March 19, 2007

#### Oregon State University Dr. Richard Nafshun

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 37 multiple-choice questions. Each question has four points associated with it (Question 37 has six). Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form in the appropriate stack and present your University ID Card to the proctor. You may keep the exam packet, so please show your work and mark the answers you selected on it.

|                                | $R = 0.0821 L \cdot atm/mol \cdot K$    |                         |                          |                            | 76                        | 760  mm Hg = 760  torr = 1  atm |                       |                           |                          | n                       | m = mol/kg                            |                                 |                                |                                   |                             |                                |                                    |
|--------------------------------|-----------------------------------------|-------------------------|--------------------------|----------------------------|---------------------------|---------------------------------|-----------------------|---------------------------|--------------------------|-------------------------|---------------------------------------|---------------------------------|--------------------------------|-----------------------------------|-----------------------------|--------------------------------|------------------------------------|
|                                | M = mol/L                               |                         |                          |                            | ΔΊ                        | $\Delta T_f = imk_f$            |                       |                           |                          |                         | $\Delta T_b = imk_b$                  |                                 |                                |                                   |                             |                                |                                    |
|                                | $\Pi V = nRT$                           |                         |                          |                            | kf                        | $\overline{(H_2O)}$             | = 1.86                | °C/m                      |                          |                         | k <sub>b</sub> (H <sub>2</sub> O)     | $\bar{0} = 0.51$                | 2 °C/m                         | 1                                 |                             |                                |                                    |
| 1<br>H<br>Hydrogen<br>1.0079   | $ \ln\left[\frac{A}{A_o}\right] = -kt $ |                         |                          |                            | k                         | $= Ae^{\frac{-E}{RT}}$          | a<br>;-               |                           |                          |                         | $K_a (CH_3COOH) = 1.8 \times 10^{-5}$ |                                 |                                |                                   |                             | 2<br>He<br>Helium<br>4.0026    |                                    |
| 3<br>Li<br>Lithium<br>6.941    | 4<br>Be<br>Beryllium<br>9.01218         |                         |                          |                            |                           |                                 |                       |                           |                          |                         |                                       | 5<br>B<br>Boron<br>10.81        | 6<br>C<br>Carbon<br>12.011     | 7<br>N<br>Nitrogen<br>14.0067     | 8<br>O<br>Oxygen<br>15.9994 | 9<br>F<br>Pluorine<br>18.9984  | 10<br>Ne<br>Neon<br>20.179         |
| 11<br>Na<br>Sodium<br>22.98977 | 12<br>Mg<br>Magnesium<br>24.305         |                         |                          |                            |                           |                                 |                       |                           |                          |                         |                                       | 13<br>Al<br>Aluminum<br>26.9815 | 14<br>Si<br>Silicon<br>28.0855 | 15<br>P<br>Phosphorus<br>30.97376 | 16<br>S<br>Sulfur<br>32.06  | 17<br>Cl<br>Chlorine<br>35.453 | 18<br><b>Ar</b><br>Argon<br>39.948 |
| . 19<br><b>K</b>               | 20<br>Ca                                | 21<br>Sc                | 22<br>Ti                 | 23<br>V                    | 24<br>CT                  | 25<br>Mn                        | 26<br>Fe              | 27<br>Co                  | 28<br>Ni                 | 29<br>C11               | 30<br>Zn                              | 31<br>Ga                        | 32<br>Ge                       | 33<br>As                          | 34<br>Se                    | 35<br>Br                       | 36<br>Řr                           |
| Potassium<br>39.0983           | Calcium<br>40.08                        | Scandium<br>44.9559     | Titanium<br>47.88        | Vanadium<br>50.9415        | Chromium.<br>51.996       | Manganese<br>54.9380            | Iron<br>55.847        | Cobalt<br>58.9332         | Nickel<br>58.70          | Copper<br>63.546        | Zinc<br>65.38                         | Gallium<br>69.72                | Germanium<br>72.59             | Arsenic<br>74.9216                | Selenium<br>78.96           | Bromine<br>79.904              | Krypton<br>83.80                   |
| 37                             | 38                                      | 39                      | 40                       | 41                         | 42                        | 43                              | 44                    | 45                        | 46                       | 47                      | 48                                    | 49                              | 50                             | 51                                | 52                          | 53                             | 54                                 |
| Rubidium<br>85.4678            | Strontium<br>87.62                      | Y<br>Yttrium<br>88.9059 | Zr<br>Zirconium<br>91.22 | Nb<br>Niobium<br>92.9064   | Mo<br>Molybdenum<br>95.94 | Tc<br>Technetium<br>98.906      | Ruthenium             | Rh<br>Rhodjum<br>102.9055 | Pd<br>Palladium<br>106.4 | Ag<br>Silver<br>107.868 | Cd<br>Cadmium<br>112,41               | In<br>Indium<br>114.82          | Sn<br>Tin<br>118.69            | Sb<br>Antimony<br>121,75          | Te<br>Tellurium<br>127.60   | I.<br>Iodine<br>126.9045       | Xe<br>Xenon<br>131.30              |
| 55                             | 56                                      | 57–71                   | 72                       | 73                         | 74                        | 75                              | 76                    | 77                        | 78                       | 79                      | 80                                    | 81                              | 82                             | 83                                | 84                          | 85                             | 86                                 |
| CS<br>Cesium<br>132.9054       | Ba<br>Barium<br>137.33                  | *Rare earths            | Hf<br>Hafnium<br>178.49  | Ta<br>Tantalum<br>180.9479 | W<br>Tungsten<br>183.85   | <b>Re</b><br>Rhenium<br>186:207 | Os<br>Osmium<br>190.2 | Ir<br>Iridium<br>192.22   | Pt<br>Platinum<br>195.09 | Au<br>Gold<br>196.9665  | Hg<br>Mercury<br>200.59               | Tl<br>Thallium<br>204.37        | Pb<br>Lead<br>207.2            | Bismuth<br>208.9804               | Po<br>Polonium<br>(209)     | At<br>Astatine<br>(210)        | Rn<br>Radon<br>(222)               |
| 87<br>Fr                       | <sup>88</sup><br>Ra                     | 89–103                  | 104<br>Rf                | 105<br>Ha                  | 106<br>Sg                 | 107<br>Ns                       | 108<br>Hs             | 109<br>Mt                 | 110<br>‡                 | 111<br>‡                |                                       | 1                               | 114                            |                                   |                             |                                | L                                  |
| Francium<br>(223)              | Radium<br>226.0254                      | 'Actinides              | Rutherfordium<br>(261)   | Hahnium<br>(262)           | Seaborgium<br>(263)       | Neilsbohrium<br>(262)           | Hassium<br>(265)      | Meitnerium<br>(266)       | (269)                    |                         |                                       |                                 |                                |                                   |                             |                                |                                    |
|                                |                                         |                         |                          |                            |                           |                                 |                       |                           |                          | _                       |                                       |                                 |                                | -                                 |                             |                                |                                    |

| <u> </u>   |          | _            |           |            |           |           |            |           |             |             |         |             |           |            |
|------------|----------|--------------|-----------|------------|-----------|-----------|------------|-----------|-------------|-------------|---------|-------------|-----------|------------|
| 57         | 58       | 59           | 60        | 61         | 62        | 63        | 64         | 65        | 66          | 67          | 68      | 69          | 70        | 71         |
| La         | Ce       | Pr           | Nd        | Pm         | Sm        | Eu        | Gd         | ТЬ        | Dy          | Ho          | Er      | Tm          | Yb        | Lu         |
| Lanthanium | Cerium   | Praseodymium | Neodymium | Promethium | Samarium  | Europium  | Gadolinium | Terbium   | Dysprosium  | Holmium     | Erbium  | Thulium     | Ytterbium | Lutetium   |
| 138.9055   | 140.12   | 140.9077     | 144.24    | 145        | 150.4     | 151.96    | 157.25     | 158.9254  | 162.50      | 164.9304    | 167,26  | 168.9342    | 173.04    | 174.967    |
| 89         | 90       | 91           | 92        | 93         | 94        | 95        | 96         | 97        | 98          | 99          | 100     | 101         | 102       | 103        |
| Ac         | Th       | Pa           | U         | Np         | Pu        | Am        | Cm         | Bk        | Cf          | Es          | Fm      | Md          | No        | Lr         |
| Actinium   | Thorium  | Protactinium | Uranium   | Neptunium  | Plutonium | Americium | Curium     | Berkelium | Californium | Einsteinium | Fermium | Mendelevium | Nobelium  | Lawrencium |
| 227.0278   | 232.0381 | 231.0359     | 238.029   | 237.0482   | (244)     | (243)     | (247)      | (247)     | (251)       | (254)       | (257)   | (258)       | 259       | 262        |





![](_page_1_Figure_2.jpeg)

![](_page_2_Figure_0.jpeg)

Please read each exam question carefully. Terms such as correct, false, unpaired, pairs, H-C-F bond angle, H-C-H angle, greatest, and smallest are used.

Unit 1 Material (First assessed on Exam 1)

1. There are \_\_\_\_ unpaired electrons in a ground-state nitride  $(N^{3-})$  ion.

| (A)<br>(B)<br>(C)<br>(D)<br>(E) | $ \begin{array}{c} 0\\1\\2\\3\\4 \end{array} $ | E | $\frac{1}{15}$ | $N - 7e^{-1}$ $N^{3-} - 10e^{-1}$ |
|---------------------------------|------------------------------------------------|---|----------------|-----------------------------------|
|                                 |                                                |   | · · ·          |                                   |

2. The ground-state electron configuration of a fluoride ion (F) is:

![](_page_3_Figure_4.jpeg)

3. Consider  $Al^{3+}$ , Al,  $F^{-}$ , and F. Which of the following statements is correct?

4. The Lewis Dot Structure of PH<sub>3</sub> depicts:

- (A) There are no lone **pairs** of electrons
- (B) (There is one lone **pair** of electrons
- (C) There are two lone **pairs** of electrons
- (D) There are three lone **pairs** of electrons
- (E) There are four lone **pairs** of electrons

5. The oxygen-oxygen bond order in ozone  $(O_3)$  is:

- (A) 1.00
- (B) 1<u>.33</u>
- (C) (1.50)
- (D) 1.75
- (E) 2.00

3x6=18 esystem

![](_page_3_Figure_21.jpeg)

- 6. The H-N-H bond angle in ammonia (NH<sub>3</sub>) is:
  - (A) 90°
  - (B) 120°
  - (C) 109.5°
  - (D) A little greater than  $109.5^{\circ}$
  - (E) (A little less than  $109.5^{\circ}$

7. The oxygen-carbon-oxygen bond angle in  $CO_2$  is:

- (A)  $(180^{\circ})$
- (B) 120°
- (C) 109.5°
- (D) A little greater than 109.5°
- (E) A little less than 109.5°
- 8. The C-O-H bond angle in ethanol, CH<sub>3</sub>CH<sub>2</sub>OH, is:
  - (A) 90°
  - (B) 120°
  - (C) 109.5°
  - (D) A little greater than 109.5°
  - (E) A little less than 109.5°

![](_page_4_Figure_18.jpeg)

- 9. The H-C-H bond angle in monofluoromethane (CH<sub>3</sub>F) is a little greater than 109.5°. This deviation from the ideal bond angle of 109.5° can be attributed to:
  - (A) Lone pairs of electrons on carbon
  - (B) (The electronegativity of fluorine
  - (C) Hydrogen bonding
  - (D) Sublimation
  - (E) Global warming

TCT this pair of et is pulled away from C by the H H electronegative fluorine

109.5° minus a little (107°)

0:::C::ö

10. Consider ethyne,  $C_2H_2$ . Draw the structure of ethyne. Ethyne contains:

- (A) no  $\pi$ -bonds.
- (B) one  $\pi$ -bond.
- (C) (two  $\pi$ -bonds.)
- (D) three  $\pi$ -bonds.

11. Molecular orbital theory predicts the  $O_2^{2-}$  ion (a minus two charge) has a bond order of:

H-CEC-H

Π

- (A) 0.5 (B) 1.0 11 1 (C) 1.5 J band (D) 2.0 (E) 2.5 74 17 TU 11
- 12. Consider MO (Molecular Orbital Theory). The N<sub>2</sub> molecule is:

![](_page_5_Figure_8.jpeg)

13. Consider the molecule below and identify the **correct** statement.

![](_page_5_Figure_10.jpeg)

- (D) There are eight carbons that have  $sp^3$  hybridization schemes.
- (E) There are thirteen carbons that have  $sp^3$  hybridization schemes.

### Unit 2 Material (First assessed on Exam 2)

The phase diagram below is for: 14.

![](_page_6_Figure_2.jpeg)

15. Consider the phase diagram below.

![](_page_6_Figure_4.jpeg)

The transition indicated by the arrow is:

- (A) Melting
- Boiling (B)
- (Sublimation) (C)
- (D) Deposition
- (E) Freezing

## molecule (non-metals)

Ethane, CH<sub>3</sub>CH<sub>3</sub>, melts at -172 °C. Li<sub>2</sub>O melts at 1570 °C. The difference in melting points can 16. be attributed to: ionic compound (metal and non-metal)

- Different intermolecular forces (dispersion, dipole-dipole, hydrogen bonding) (A)
- (B) Different ionic charges
- Different distances between nuclei (d) (C)
- Network covalent compounds (D)
- One is a molecule (attractions by intermolecular forces), one is an ionic compound (E) (attractions by charges)

17. Consider NaF, CaO, H<sub>2</sub>O, CaS, He, and CH<sub>3</sub>OCH<sub>3</sub>. Arranged in **increasing** melting point, these are:

|       | Lowest mp                                                                                                                                                                                                            | <u>Highest mp</u>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (A) NaF < CaO < CaS < He<br>(B) He < NaF < CaO < CaS<br>(C) He < CH <sub>3</sub> OCH <sub>3</sub> < H <sub>2</sub> O <<br>(D) He < CH <sub>3</sub> OCH <sub>3</sub> < H <sub>2</sub> O <<br>(E) He < NaF < CaS < CaO |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Inert | Molecules                                                                                                                                                                                                            | Ionic Compounds                              | Network Covalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| He    | CH3OCH3 H2O                                                                                                                                                                                                          | NaF Cas CaO                                  | Der Contraction (no contraction of the contraction |
|       | DD DDD                                                                                                                                                                                                               | +1 -1 +2 -2 +2 -2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                      | charges closer<br>together in CaO            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18.   | Consider CH <sub>3</sub> OCH <sub>3</sub> . The intern                                                                                                                                                               | molecular forces present in $CH_3OCH_3$ are: | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

- (A) Dispersion forces only
- (B) (Dispersion forces and dipole-dipole forces
- (C) Dispersion forces, dipole-dipole forces, and hydrogen bonding
- (D) Hydrogen bonding only

![](_page_7_Figure_6.jpeg)

19. The product produced from the diol and dicarboxylic acid shown below is:

![](_page_7_Figure_8.jpeg)

- (D) Quartz
- (E) Soap

20. Which of the following compounds cannot undergo free radical polymerization?

![](_page_8_Figure_1.jpeg)

21. The equivalent number of atoms in the FCC unit cell is:

![](_page_8_Figure_3.jpeg)

The structure below [from *Worksheet 6 During Recitation*] represents: 22.

![](_page_8_Picture_5.jpeg)

- An SC unit cell (A)
- (B) A BCC unit cell
- A FCC unit cell (C)
- (D) A NCAA unit cell
- (E) An OSU unit cell

23. The freezing point of 0.150 m aqueous CaCl<sub>2</sub> is:

(A) 
$$-0.279 \circ C$$
  
(B)  $-4.19 \circ C$   
(C)  $-0.558 \circ C$   
(D)  $+100.279 \circ C$   
(E)  $-0.837 \circ C$   
(A)  $-0.279 \circ C$   
(B)  $-0.837 \circ C$   
(C)  $-0.837 \circ C$   
(E)  $-0.837 \circ C$   
(C)  $-0.837 \circ C$ 

...

24. A student ( $\bigwedge^{4}$ ) obtains an 80.0 gram sample of  ${}^{60}$ Co ( $t_{1/2} = 5.0$  years). How many grams of  ${}^{60}$ Co will remain after 15.0 years?

![](_page_9_Figure_1.jpeg)

25. A student ( $\checkmark$ ) obtains an 80.0 gram sample of <sup>60</sup>Co ( $t_{1/2} = 5.0$  years). How long will it take so that only 50.0 grams of <sup>60</sup>Co remain?

![](_page_9_Figure_3.jpeg)

26. The following are initial rate data for:

#### $A + 2B \rightarrow C + 2D$

Rate= K[A] [B]

| Experiment | Initial [A] | Initial [B] | Initial Rate             |                   |
|------------|-------------|-------------|--------------------------|-------------------|
| 1          | 0.10 72     | 0.10        | ( <sup>0.222</sup> )×4 4 | $-[A]^{\epsilon}$ |
| 2          | 0.20 2      | 0.10 ) * 2  | ×0 0.888 ×               |                   |
| 3          | 0.10        | 0.20 ¥      | V 0.222                  | [8]               |

(A) The rate law is Rate = 
$$k[A]^{1}[B]^{2}$$

- (B) The rate law is Rate =  $k[A]^2[B]^1$
- (C) (The rate law is Rate =  $k[A]^2[B]^0$
- (D) The rate law is Rate =  $k[A]^{\theta}[B]^{+}$
- (E) The rate law is Rate =  $k[A]^{1}[B]^{0}$

Unit 3 Material (Not previously assessed)

- 27. As the reaction proceeds, the rate:
  - (A) increases. (B) decreases.
  - (C) remains constant.

![](_page_10_Figure_4.jpeg)

28. Which graph could correctly depict the changes in concentrations for the reaction 2 N<sub>2</sub> (g) + 5 O<sub>2</sub> (g) + 2 H<sub>2</sub>O (l)  $\rightarrow$  4 HNO<sub>3</sub> (aq)?

![](_page_10_Figure_6.jpeg)

- 29. Which of the following statements is false?
  - (A) Increasing the temperature of a reaction will increase the rate.
  - (B) Increasing the number of collisions will increase the rate of reaction.
  - (C) Lowering the activation energy will increase the rate of reaction.
  - The addition of a catalyst will decrease the rate of a process. The catalyst will INCREASE The addition of a catalyst will lower the activation energy of a process. The rate (the rock (D)
  - (E)

[NO]2

[Noz] {02} The equilibrium law expression for the reaction  $2 NO_2(g) \Leftrightarrow O_2(g) + 2 NO(g)$  is: 30. reactant S products

(A) 
$$K_{c} = \frac{[O_{2}][NO]}{[NO_{2}]^{2}}$$
 (B)  $K_{c} = \frac{[O_{2}]^{2}[NO]}{[NO_{2}]^{2}}$   
(C)  $K_{c} = \frac{[O_{2}][NO]^{2}}{[NO_{2}]^{2}}$  (D)  $K_{c} = \frac{[O_{2}][NO]}{[NO_{2}]}$ 

(E) 
$$K_{c} = \frac{[NO_{2}]^{2}}{[O_{2}][NO]^{2}}$$

31. Consider the system  $SO_2(g) + CO_2(g) \Leftrightarrow CO(g) + SO_3(g)$   $K_c = 6.76$ 

A student prepares the system and measures:

$$[SO_{2}] = 1.03 \text{ M} \quad [CO_{2}] = 1.22 \text{ M} \quad [CO] = 2.93 \text{ M} \quad [SO_{3}] = 2.90 \text{ M}$$
(A) The system is not at equilibrium.  
(B) The system is not at equilibrium.  

$$K_{c}(\text{for experiment}) = \frac{\sum co \sum \sum co }{\sum co } = \frac{(2.93)(2.90)}{(1.03)(1.22)} = 6.76$$

Kc (for experiment) = Kc (literature) i. the system is at equilibrium

32. The following reaction is at equilibrium:

$$\begin{array}{ccc} 2HBr (g) \Leftrightarrow H_2 (g) + Br_2 (g) & \Delta H^0 = +72 \ \text{kJ} \ (\text{endothermic}) \\ \end{array}$$
(A) The concentration of HBr (g) increases when the system is heated.  
(B) The concentration of HBr (g) decreases when the system is heated.  
(C) The concentration of HBr (g) stays the same when the system is heated.

33. The following reaction is at equilibrium:

2HBr (g)  $\Leftrightarrow$  H<sub>2</sub> (g) + Br<sub>2</sub> (g)  $\Delta$ H<sup>o</sup> = +72 kJ (endothermic)

- (A) The concentration of  $Br_2(g)$  increases when HBr (g) is added.)
- (B) The concentration of  $Br_2(g)$  decreases when HBr (g) is added.
- (C) The concentration of  $Br_2(g)$  stays the same when HBr (g) is added.

34. The pH of 0.050 M HCl (aq) is:

(A) 
$$(1.30.)$$
  
(B)  $(0.050.)$   
(C)  $(0.100.)$   
(D)  $1.70.$   
(E)  $3.00.$   
(A)  $(1.30.)$   
(A)  $(1.30.)$   
(B)  $(1.30.)$   
(C)  $(1$ 

35. A student obtains 0.175 M CH<sub>3</sub>COOH (aq). The "ICE" table used to solve the equilibrium expression for this weak acid is:

| (A) |   | CH <sub>3</sub> COOH (aq) | $H_2O(l)$ | ₹,  | CH <sub>3</sub> COO <sup>-</sup> (aq) | $H_3O^+$ (aq)    |
|-----|---|---------------------------|-----------|-----|---------------------------------------|------------------|
|     | Ι | 0                         |           |     | 0.175                                 | 0.175            |
|     | С | +x                        |           | . · | $+_{\mathbf{X}}$                      | $+_{\mathbf{X}}$ |
|     | E | Х                         |           |     | 0.175+x                               | 0.175+x          |

| (B) |   | CH <sub>3</sub> COOH (aq) | $H_2O(l)$ | ₽ | CH <sub>3</sub> COO <sup>-</sup> (aq) | $H_3O^+(aq)$ |
|-----|---|---------------------------|-----------|---|---------------------------------------|--------------|
|     | Ι | 0                         |           |   | 0                                     | 0            |
|     | С | -X                        |           |   | $+\mathbf{x}/2$                       | +x/2         |
|     | Е | -X                        |           |   | X                                     | Х            |

| (C) |   | CH <sub>3</sub> COOH (aq) | $H_2O(l) =$ | ≥ CH <sub>3</sub> COO <sup>-</sup> (aq) | $\mathrm{H_{3}O^{+}}(\mathrm{aq})$ |
|-----|---|---------------------------|-------------|-----------------------------------------|------------------------------------|
|     | Ι | 0.175                     |             | 0                                       | 0                                  |
|     | C | -X                        |             | +x/2                                    | +x/2                               |
|     | Е | 0.175-x                   |             | x/2                                     | x/2                                |

| 1   | . بەركى كۆۈمەد سەھەرب رە | or any strategy and a strategy and a strategy and and a strategy and a strategy and and |                                                         |                               |                                                                                                                 | · •                                         |
|-----|--------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| (D) |                          | CH <sub>3</sub> COOH (aq)                                                               | $H_2O(l)$                                               | ZŻ                            | CH <sub>3</sub> COO <sup>-</sup> (aq)                                                                           | $H_3O^+$ (aq)                               |
|     | \ I                      | 0.175                                                                                   |                                                         |                               | 0                                                                                                               | 0                                           |
|     | $\setminus C$            | -X                                                                                      |                                                         | •                             | +x                                                                                                              | +x                                          |
|     | \ Ε                      | 0.175-x                                                                                 |                                                         |                               | х                                                                                                               | x                                           |
|     |                          | ሻጥ <del>የሚያቀረብ የሚያር ማስተዋ የሚያር ማይ</del> ን አቶቻ የሚያር የርጉ የመቀ አቶምሪ ይነው የ ቀም ላ ት ም ት ና       | د هر <sup>بر</sup> یک و ماهیچند و ام و میک میچود که است | رار فیکا ماد بعر پایدی .<br>ر | an na anna an an anna an Arlaich an San ann an Airtean an Airtean an Airtean an Airtean an Airtean an Airtean a | 1.1019/10140101111/070011000000000000000000 |
| (E) |                          | CH <sub>3</sub> COOH (aq)                                                               | $H_2O(l)$                                               | *                             | CH <sub>3</sub> COO <sup>-</sup> (aq)                                                                           | $H_3O^+(aq)$                                |
|     | I                        | 0.175                                                                                   |                                                         |                               | 0.175                                                                                                           | 0.175                                       |
|     | С                        | -x                                                                                      | •                                                       |                               | $+_{X}$                                                                                                         | +x                                          |
|     | E                        | 0.175-x                                                                                 |                                                         |                               | $0.175 \pm x$                                                                                                   | $0.175 \pm x$                               |

![](_page_12_Figure_5.jpeg)

36.  $CH_3COOH$  (aq) is a weak acid ( $K_a = 1.80 \times 10^{-5}$ ). The pH of 0.175 M CH<sub>3</sub>COOH (aq) is:

(A) 
$$0.175$$
  
(B)  $3.15 \times 10^{-6}$   
(C)  $2.75$   
(D)  $5.50$   
(E)  $0.150$   
**I**  $0.175$   
**E**  $0.175$   
**I**  $0.175$ 

$$K_{a} = 1.80 \times 10^{5} = \frac{\text{products}}{\text{reactants}} = \frac{[CH_{3}COO^{-}]\{H_{3}O^{+}]}{[CH_{3}COOH]} = \frac{\chi^{2}}{0.175 - \chi^{10}u^{+}}$$

$$1.80 \times 10^{5} = \frac{\chi^{2}}{0.175}$$

$$\chi^{2} = 3.15 \times 10^{-6}$$

$$\chi = 0.00177 = [H_{3}O^{+}]$$

$$pH = -209[H_{3}O^{+}] = -209(0.00177) = 2.75$$

37. Well, well... CH 122 is over. Now it's time to:

![](_page_13_Picture_4.jpeg)

- (B) Drive <u>hundreds</u> of miles from here to find a sunny day.
- (C) Check out the new Home Depot. I hear they have molecule-patterned wallpaper in stock.
- (D) Brush my teeth and change out of my pajamas.
- (E) Two words: March Madness.

[Any response will receive full credit; even no response.]

Questions 1 through 36 have four points attached (144 total). Any response to Question 37 will receive full credit (6 Points total); even no response. The point total for this exam is 150 points. See the grade sheet for grade computation details. Final exam keys, scores, and course grades will be posted on the CH 122 website as they become available.