Instructions: You should have with you several number two pencils, an eraser, your 3"x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form in the appropriate stack and present your University ID Card to the proctor. You may keep the exam packet, so please show your work and mark the answers you selected on it.

|  | $\begin{aligned} & \mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K} \\ & \mathrm{M}=\mathrm{mol} / \mathrm{L} \\ & \Pi \mathrm{~V}=\mathrm{nRT} \\ & 1000 \mathrm{~mL}=1 \mathrm{~L} \end{aligned}$ |  |  |  | $\begin{aligned} & 1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg} \\ & \Delta \mathrm{~T}_{\mathrm{f}}=\mathrm{i} \mathrm{k}_{\mathrm{f}} \mathrm{~m} \\ & \mathrm{k}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86^{\circ} \mathrm{C} / \mathrm{m} \\ & \ln \left[\frac{A}{A_{o}}\right]=-k t \end{aligned}$ |  |  |  |  | $\begin{aligned} & \mathrm{m}=\mathrm{mol} / \mathrm{kg} \\ & \Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{i} \mathrm{k}_{\mathrm{b}} \mathrm{~m} \\ & \mathrm{k}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.512^{\circ} \mathrm{C} / \mathrm{m} \end{aligned}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underbrace{}_{\substack{1 \\ \mathbf{H} \\ \text { Hydrogen } \\ 1.079}}$ |  |  |  |  | $\stackrel{2}{\mathrm{He}}$ <br> Helium <br> 4.0026 |  |  |  |  |  |  |  |
| $\stackrel{3}{\mathrm{Li}}$ <br> $\substack{\text { Libium } \\ 6.941}$ <br>  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 <br> B <br> Boron <br> 10.81 | $\begin{gathered} 6 \\ \mathrm{C} \\ \text { Catron } \\ 12.011 \end{gathered}$ | 7 <br> N <br> Nivegn <br> 10.06 | $\begin{gathered} \hline 8 \\ \mathrm{O} \\ \text { oxygen } \\ \text { is9994 } \\ \hline \end{gathered}$ | $\stackrel{9}{\mathrm{~F}}$ <br> Fluorine <br> 18.9884 | $\begin{aligned} & \hline 10 \\ & \mathrm{Ne} \\ & \text { Neon } \\ & \text { 20.79 } \\ & \hline \end{aligned}$ |
| $\begin{gathered} 11 \\ \mathrm{Na} \\ \text { Sodium } \\ \text { 22.8897 } \\ \hline \end{gathered}$ | $\begin{gathered} \hline \begin{array}{c} 12 \\ \mathrm{Mg} \\ \text { Magnesium } \\ 24.305 \end{array} \end{gathered}$ |  |  |  |  |  | - |  |  |  |  | $\begin{gathered} \hline 13 \\ \mathrm{Al} \\ \text { Aluminum } \\ 26.9815 \\ \hline \end{gathered}$ | $\begin{array}{r} 14 \\ \begin{array}{r} 14 \\ \text { Silionn } \\ \text { Siboss } \\ \text { S28.085 } \end{array} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 15 \\ \mathrm{P} \\ \text { Phasphons } \\ 30.97376 \\ \hline \end{array}$ | $\begin{gathered} 16 \\ \hline \\ \text { Sulfir } \\ 32.66 \\ \hline \end{gathered}$ | $\begin{gathered} { }^{17} \\ \substack{\mathrm{Cllofnc} \\ 35.453} \\ \hline \end{gathered}$ | 18 <br> Ar <br> Argan <br> 39.948 |
| $\begin{gathered} 19 \\ \mathbf{K} \\ \begin{array}{c} \text { Poassive } \\ 39.083 \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} 20 \\ \mathrm{Ca} \\ \text { Calcium } \\ \hline 40.88 \\ \hline \end{gathered}$ | $\begin{array}{\|c} \hline 21 \\ \mathrm{Sc} \\ \text { Scandium } \\ \text { 4.95ss } \end{array}$ | $\begin{gathered} \hline 22 \\ \text { Ti } \\ \text { Tivanium } \\ 47.88 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 23 \\ \mathrm{~V} \\ \text { Vanadium } \\ \text { 50.a415 } \\ \hline \end{array}$ | $\begin{gathered} { }^{24} \\ \mathrm{Cr}^{2} \\ \text { Chomium } \\ 51.986 \\ \hline \end{gathered}$ |  | $\begin{aligned} & 26 \\ & \mathrm{Fe} \\ & \text { Fen } \\ & \text { kron } \\ & 55.897 \end{aligned}$ | $\begin{gathered} 27 \\ \text { Co } \\ \text { Cobath } \\ \hline 58932 \end{gathered}$ | $\begin{gathered} 28 \\ \hline \begin{array}{c} \text { Nickel } \\ \mathrm{Ni} \text { ickl } \\ 5870 \end{array} \end{gathered}$ | $\begin{gathered} \hline 29 \\ \mathrm{Cu} \\ \text { Copper } \\ 6.346 \\ \hline \end{gathered}$ | $\begin{aligned} & 30 \\ & \mathrm{Zn} \\ & \mathrm{Znn} \\ & \mathrm{Znnc} \\ & 65.38 \end{aligned}$ | $\begin{gathered} 31 \\ \mathrm{Ga} \\ \substack{31 \\ \text { Callium } \\ \text { 69.72 }} \end{gathered}$ | $\begin{array}{\|c\|} \hline 32 \\ \mathrm{Ge} \\ \text { Cernenium } \\ 2259 \\ \hline \end{array}$ | $\begin{gathered} \hline 33 \\ \text { As } \\ \text { Assenic } \\ 74.5216 \\ \hline \end{gathered}$ | $\begin{gathered} 34 \\ \begin{array}{c} 34 \\ \text { Se } \\ \text { Selnium } \\ \text { z8.96 } \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} 35 \\ \begin{array}{c} 35 \\ \text { Bromine } \\ 79.94 \\ 7 \end{array} \end{gathered}$ | $\begin{array}{\|c} \hline 36 \\ \substack{36 \\ \text { Kyppon } \\ \text { By.80 } \\ \hline \\ \hline} \\ \hline \end{array}$ |
|  | $\begin{array}{\|c\|} \hline 38 \\ \text { Sr } \\ \text { Sronium } \\ \text { S7..62 } \end{array}$ | $\begin{gathered} \hline 39 \\ \hline \text { Y } \\ \text { Yrium } \\ 88.059 \\ \hline \end{gathered}$ | $\begin{gathered} 40 \\ \mathrm{Zr} \\ \text { zironium } \\ 91.22 \end{gathered}$ | $\begin{array}{\|c\|} \hline 41 \\ \mathrm{Nb} \\ \text { Nobium } \\ \text { Nota } \\ \hline 92064 \\ \hline \end{array}$ | 42 <br> Mo <br> Molydereum <br> 95.44 | $\begin{array}{\|c\|} \hline 43 \\ \text { Tc } \\ \text { Techneium } \\ 98.906 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 44 \\ \mathrm{Ru} \\ \text { Ruthenium } \\ \text { 101.07 } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 45 \\ \mathrm{Rh} \\ \text { Rhodium } \\ \text { 102.9055 } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 46 \\ \text { Pd } \\ \text { Palladium } \\ \text { 106.4 } \\ \hline \end{array}$ | $\begin{gathered} 47 \\ \substack{\text { siver } \\ \text { siver } \\ \text { 107.888 }} \end{gathered}$ | $\begin{gathered} 48 \\ \begin{array}{c} \text { Cd } \\ \text { Casmium } \\ \text { 112.41 } \end{array} \end{gathered}$ | $\begin{gathered} 49 \\ \text { In } \\ \text { Indium } \\ \text { Ind.82 } \\ \hline \end{gathered}$ | $\begin{gathered} 50 \\ \mathrm{Sn} \\ \begin{array}{c} \mathrm{sin} \\ \mathrm{~min} \\ 118.69 \end{array} \end{gathered}$ | $\left\lvert\, \begin{gathered} 51 \\ \mathrm{Sb} \\ \begin{array}{c} \text { Animony } \\ \text { i21.75 } \end{array} \end{gathered} .\right.$ | $\begin{gathered} 52 \\ \mathrm{Te} \\ \text { Tellurium } \\ \text { 127.60 } \\ \hline \end{gathered}$ | $\begin{gathered} 53 \\ I \\ \text { Iotide } \\ \text { I26.9045 } \\ \text { 126. } \end{gathered}$ | $\begin{gathered} 54 \\ \mathrm{Xe} \\ \text { Xenon } \end{gathered}$ $131.30$ |
| $\begin{gathered} \hline 55 \\ \mathrm{Cs} \\ \begin{array}{c} \text { cesium } \\ \text { ch2054 } \end{array} \end{gathered}$ | $\begin{gathered} 56 \\ \begin{array}{c} \text { Ba } \\ \text { Batium } \\ 137.33 \end{array} \\ \hline \end{gathered}$ | ${ }^{57-71}$ |  | $\begin{array}{\|c\|} \hline 73 \\ T a \\ \text { Tanalau } \\ \text { TBa.479 } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 74 \\ W \\ \text { Tunsen } \\ \text { tr3.85 } \\ \hline \end{array}$ | 75 <br> Re <br> Rhenium <br> 186.207 | $\begin{gathered} \hline 76 \\ \text { Os } \\ \text { Ossmium } \\ \text { iog.2 } \\ \hline \end{gathered}$ | $\begin{gathered} \hline 77 \\ \text { Ir } \\ \text { Iridum } \\ 192.22 \\ \hline \end{gathered}$ | $\begin{array}{\|c} 78 \\ \mathrm{Pt} \\ \text { Platiou } \\ \text { P99.09 } \\ \text { 190 } \end{array}$ | $\begin{gathered} 79 \\ \text { Au } \\ \substack{\text { Auld } \\ \text { Go6.d.65 }} \end{gathered}$ | $\begin{gathered} 80 \\ \begin{array}{c} \text { Mercury } \\ \text { Mg } \\ \text { 200.59 } \end{array} \end{gathered}$ | $\begin{gathered} 81 \\ \mathrm{Tl} \\ \substack{\text { Thallum } \\ \text { To4.37 } \\ 2047} \end{gathered}$ | $\begin{aligned} & 82 \\ & \mathrm{~Pb} \\ & \text { Lead } \\ & \text { mod } \end{aligned}$ | $\begin{gathered} 83 \\ \begin{array}{c} 83 \\ \text { Bismuin } \\ \text { Bise } \\ 208804 \end{array} \end{gathered}$ | $\begin{gathered} 84 \\ \text { Po } \\ \text { Polonium } \\ \text { cro9) } \end{gathered}$ |  | 86 Rn Radon (222) |
| $\begin{gathered} 87 \\ \begin{array}{c} 87 \\ \text { Francium } \\ (223) \\ \hline \end{array} \\ \hline \end{gathered}$ | $\begin{gathered} 88 \\ \text { Ra } \\ \text { Radium } \\ \text { Radions } \\ \hline 220.0 \end{gathered}$ | ${ }^{89-103}$ | $\substack{104 \\ \text { Rf } \\ \text { Rubserforium } \\ \text { (261) }}$ | $\begin{array}{\|c\|} \hline 105 \\ \text { Ha } \\ \text { Halmium } \\ \text { (262) } \end{array}$ | 106 Sg seaborgium (203) | 107 Ns Neilsohrium (262) | $\begin{gathered} 108 \\ \text { Hs } \\ \text { Hassium } \\ (2255) \\ \hline \end{gathered}$ | $\underset{\substack{\text { Meiverium } \\ \text { (226) }}}{\mathbf{M t}}$ | $\stackrel{110}{\ddagger}$ <br> (269) | $\stackrel{11}{\ddagger}$ |  |  | ${ }^{114}$ |  |  |  |  |


| $\begin{gathered} \begin{array}{c} 57 \\ \mathrm{La} \\ \text { Lanthanium } \\ \text { 138.9055 } \end{array} \end{gathered}$ | .58 <br> Ce <br> Cerium <br> 140.12 | $\begin{array}{\|c\|} \hline 59 \\ \mathrm{Pr} \\ \hline \text { Prascodynum } \\ 140.9077 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 60 \\ \text { Nd } \\ \text { Neodymium } \\ 144.24 \end{array}$ | $\begin{gathered} 61 \\ \mathrm{Pm} \\ \hline \text { Promethium } \\ 145 \end{gathered}$ | $\begin{gathered} 62 \\ \mathrm{Sm} \\ \text { Samarium } \\ 150.4 \end{gathered}$ | $\begin{gathered} 63 \\ \text { Eu } \\ \text { Europium } \\ 151.96 \end{gathered}$ | 64 Gd <br> Gadolinium 157.25 | Tb <br> Terbium <br> 158.9254 | $\begin{array}{\|c\|} \hline 66 \\ \text { Dy } \\ \text { Dysprosium } \\ 162.50 \end{array}$ | 67 <br> Ho <br> Holmium 164.9304 | 68 <br> Er <br> Erbium <br> 167,26 | 69 <br> Tm <br> Thulium <br> 168.9342 | $\begin{gathered} 70 \\ \mathrm{Yb} \\ \text { Yterbium } \\ 173.04 \end{gathered}$ | $\begin{gathered} 71 \\ \mathrm{Lu} \\ \text { Luetium } \\ \text { Lu4.967 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 Ac <br> Actinium 227.0278 | $\begin{gathered} 90 \\ \text { Th } \\ \text { Thorium } \\ 232.0381 \end{gathered}$ | 91 Pa Protactinium 231.0359 | $\begin{gathered} 92 \\ \mathrm{U} \\ \text { UUnenium } \\ 238.029 \end{gathered}$ | $\begin{array}{\|c\|} \hline 93 \\ \mathrm{~Np} \\ \text { Neplunium } \\ \text { 237.0482 } \end{array}$ | $\begin{gathered} 94 \\ \mathrm{Pu} \\ \text { Plutonium } \\ (244) \end{gathered}$ | $\begin{gathered} 95 \\ \text { Americium } \\ (243) \end{gathered}$ | 96 Cm <br> Curium (247) | $\begin{gathered} 97 \\ \mathrm{Bk} \\ \text { Berkelium } \\ (247) \\ \hline \end{gathered}$ | $\begin{gathered} 98 \\ \mathrm{Cf} \\ \text { Califomium } \\ \text { (251) } \end{gathered}$ | $\begin{gathered} 99 \\ \mathrm{ES} \\ \text { Einsteinium } \\ (254) \end{gathered}$ | $\begin{gathered} 100 \\ \text { Fm } \\ \text { Fermium } \\ (257) \end{gathered}$ | 101 <br> Md <br> Mendelevium <br> (258) | $\begin{gathered} 102 \\ \mathrm{NO} \\ \text { Nobelium } \\ 259 \end{gathered}$ | 103 <br> Lr <br> Lawrencium <br> 262 |

1. Consider the phase diagrams below. Which diagram could correctly describe water?

(B)


2. The reaction below will produce:

(A) Quartz
(B) A network covalent compound
(C) An ionic compound
(D) Soap
(E) A polymer
3. Consider the phase diagram below for compound Smashingpumpkinsarebackium. The normal boiling point is:
(A) $0{ }^{\circ} \mathrm{C}$.
(B) $50^{\circ} \mathrm{C}$
(C) $75^{\circ} \mathrm{C}$
(D) $100^{\circ} \mathrm{C}$
(E) $\quad 200^{\circ} \mathrm{C}$

4. Lithium fluoride melts at $848^{\circ} \mathrm{C}$. Lithium oxide melts at $1570^{\circ} \mathrm{C}$. The difference in melting points can be attributed to:
(A) Different intermolecular forces (dispersion, dipole-dipole, hydrogen bonding)
(B) Different ionic charges ( $+1,+2,+3,-1,-2,-3 \ldots$.
(C) Different distances between nuclei (ionic size)
(D) Network covalent compounds
(E) One is a molecule (attractions by intermolecular forces), one is an ionic compound (attractions by charges)

5. Sodium fluoride melts near $993{ }^{\circ} \mathrm{C}$. Sodium chloride melts near $804^{\circ} \mathrm{C}$. The difference in melting points can be attributed to:
(A) Different intermolecular forces (dispersion, dipole-dipole, hydrogen bonding)
(B) Different ionic charges $(+1,+2,+3,-1,-2,-3 \ldots)$
(C) Different distances between nuclei (ionic size)
(D) Network covalent compounds
(E) The sheet-like structure



Molecule
Ionic Compound
6. Ethane, $\mathrm{CH}_{3} \mathrm{CH}_{3}$, melts at $-172^{\circ} \mathrm{C}$. Lithium oxide melts at $1570^{\circ} \mathrm{C}$. The difference in melting points can be attributed to:
(A) Different intermolecular forces (dispersion, dipole-dipole, hydrogen bonding)
(B) Different ionic charges ( $+1,+2,+3,-1,-2,-3 \ldots)$
(C) Different distances between nuclei (ionic size)
(D) Network covalent compounds
(E) One is a molecule (attractions by intermolecular forces), one is an ionic compound (attractions by charges)
7. Which of the following is false?
(A) $\mathrm{CH}_{3} \mathrm{~F}$ is a non-polar molecule which exhibits dipole-dipole forces.
(B) Cesium oxide is a non-polar molecule which exhibits dipole-dipole forces.
(C) Water is a polar molecule which exhibits hydrogen bonding.
(D) Quartz is a network covalent compound.
(E) Network covalent compounds typically melt at higher temperatures than molecules.
8. Consider $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{OCH}_{3}$. Which of the following statements is false?
(A) Both compounds exhibit dispersion forces.
(B) Both compounds exhibit dipole-dipole forces.
(C) Both compounds exhibit hydrogen bonding.
9. Consider $\mathrm{LiF}, \widetilde{\mathrm{Ne}, \mathrm{H}_{2} \mathrm{O} \text {, diamond, } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{Li}_{2} \mathrm{O}, \mathrm{LiCl} \text {, and } \mathrm{Al}_{2} \mathrm{O}_{3} \text {. Arranged in increasing }}$ melting point, these are:

Lowest mp
Highest mp
(A) $\mathrm{Ne}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{LiF}<\mathrm{LiCl}<\mathrm{Li}_{2} \mathrm{O}<$ diamond
(B) $\mathrm{Ne}_{\mathrm{Ne}}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{LiCl}<\mathrm{LiF}<\mathrm{Li}_{2} \mathrm{O}<\mathrm{Al}_{2} \mathrm{O}_{3}<$ diamond
(C) $\mathrm{Ne}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{LiF}<\mathrm{LiCl}<\mathrm{Li}_{2} \mathrm{O}<\mathrm{Al}_{2} \mathrm{O}_{3}<$ diamond
(D) $\mathrm{Ne}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{LiF}<\mathrm{LiCl}<\mathrm{Li}_{2} \mathrm{O}<\mathrm{Al}_{2} \mathrm{O}_{3}<$ diamond
(E) $\mathrm{LiF}<\mathrm{Ne}<\mathrm{H}_{2} \mathrm{O}<$ diamond $<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}<\mathrm{Li}_{2} \mathrm{O}<\mathrm{LiCl}<\mathrm{Al}_{2} \mathrm{O}_{3}$

| Inert Gases | Molecules | Ionic Compounds | Network Covalent Compounds |
| :---: | :---: | :---: | :---: |
| Ne | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ $\mathrm{H}_{2} \mathrm{O}$ <br> (I) <br> (I) III III) |  | diamond |

10. Which of the following has a hydrophilic end (polar, water-loving end) and a hydrophobic end (non-polar, water-fearing end) and has the ability to bridge water molecules to non-polar molecules?
(A) methane $\left(\mathrm{CH}_{4}\right)$
(B) soap
(C) lithium chloride
(D) helium
(E) diamond
11. Which of the following compounds cannot undergo free radical polymerization?
(A) $\quad \mathrm{CF}_{2} \mathrm{CF}_{2}$
(B) $\quad \mathrm{CCl}_{2} \mathrm{CCl}_{2}$
(C) $\quad \mathrm{CH}_{2} \mathrm{CH}_{2}$
(D)

(E)

12. Which of the following molecules will not form hydrogen bonds?

(A)

(B)

13. The intermolecular forces that are most significant in accounting for the high boiling point of liquid water relative to other substances of similar molecular weight is/are the:
(A) Dispersion forces
(B) Dipole-dipole interactions
(C) Hydrogen bonding
(D) Network covalent forces
(E) Ionic charges

14. Compounds with relatively high vapor pressure have:
(A) high boiling points and weak intermolecular forces
(B) low boiling points and weak intermolecular forces
(C) high boiling points and strong intermolecutar forces
(D) high boiling points and strong intermolecular forces
15. Which of the following best describes the properties of a typical metal?
(A) Sof, very low melting point, poor electrical conductor
(B) Lustrous, good thermal conductor, good electrical conductor, ductile, and malleable
(C) Very hard, very high melting point, poor electrical conductor
(D) Lustrous, low melting point, low density, malleable
16. The equivalent number of atoms in the BCC unit cell is:

| (A) |  |
| :--- | ---: |
| (B) | 2 |
| (C) | 3 |
| (D) | 4 |
| (E) | 6 |

17. The structure below [from a Courge Worksheet] represents:

(A) AnSCunitcell
(B) A BCC unit cell
(C) A FCC untt cell
(D) A stem unit cell
(E) An anterior lens epithelial unit cell
18. The boiling point of 2.450 m aqueous $\mathrm{MgCl}_{2}$ is: $i=3$
(A) $+107.5^{\circ} \mathrm{C}$.

(B) $+7.53^{\circ} \mathrm{C}$.

$$
\text { (C) }+103.8^{\circ} \mathrm{C} \text {. }
$$

$$
\text { (D) }+102.5^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
& \Delta T_{b}=i k_{b} \mathrm{~m} \\
& \Delta T_{b}=(3)\left(0.512^{\circ} \mathrm{c} / \mathrm{m}\right)(2.450 \mathrm{~m}) \\
& \Delta T_{b}=3.76^{\circ} \mathrm{C} \\
& \text { Water boils at } 100^{\circ} \mathrm{C} \\
& 2.450 \mathrm{~m} \mathrm{MgCl}_{2}(\mathrm{ag}) \text { boils at } 100^{\circ} \mathrm{C}+3.76^{\circ} \mathrm{C}=103.8^{\circ} \mathrm{C}
\end{aligned}
$$

19. A student dissolves 5.66 g of an unknown protein in 1750 mL of water at 300 K . She measures the osmotic pressure to be 0.711 mm Hg . What is the molar mass of the protein?

20. Why is molality used as the unit of concentration rather than molarity for colligative property calculations?
(A) Molarity is not temperature dependent; molality is
(B) Molality is not temperature dependent; molarity is.
(C) Molality calculations are easier to perform in lab.
(D) Molarity can only be used with network covalent compounds.
(E) Molarity can only be used with hydrophobic molecules.
21. The half-life is:
(A) The amount of time required for the entire sample to decay
(B) Exactly 0.500 years
(C) The amount of time required for half the sample to decay
(D) The amount of time required for the sample to decay so only a few atoms remain
(E) The 20 minute period between the second and third quarters of a football game
22. A student $\left(\AA^{* *}\right)$ obtains a 10.00 gram sample of ${ }^{14} \mathrm{C}\left(\mathrm{t}_{1 / 2}=5750\right.$ years $)$. How many grams of ${ }^{14} \mathrm{C}$ will remain after 11,500 years?
(A) 10.00 grams
(B) 5.00 grams $10 \%$
(C) 2.50 grams
(D) 2.00 grams
(E) 1.25 grams

23. A student ( 噱 ) obtains a 10.00 gram sample of ${ }^{14} \mathrm{C}\left(\mathrm{t}_{1 / 2}=5750\right.$ years $)$. How long will it take so that only 2.00 grams of ${ }^{131}$ I remain?
(A) 5750 years
(1) Cate $k$
(B) 11,500 years
(C) 2875 years

$$
\ln \frac{1}{2}=-k+1 / 2
$$

(D) 13,351 years
(E) 1851 years
$-0.693=-k(5750 y)$

$$
k=1.21 \times 10^{-4} \frac{1}{y}
$$

(2) Call +

$$
\begin{aligned}
& \ln \left(\frac{2.00 \mathrm{~g}}{10.00 \mathrm{~g}}\right)=-\left(1.21 \times 10^{-4} \frac{1}{y}\right)(t) \\
& t=13,351 y
\end{aligned}
$$

24. The data below were obtained for ethyl acetate. Estimate by interpolation the temperature when the vapor pressure is 700 torr.

25. The Chemistry 122 final exam is Monday, March 19, 2007 at 7:30am; yes, this is only three hours after my ordinary bedtime. After the chemistry final I will be...
(A) Sleeping
(B) Hosting the best Spring Break Party ever
(C) Two words: You Tube
(D) Preparing for my other seven final exams
(E) On my way to Florida to engage in hot, wild sox (because it will be Spring Training and the Red Sox play their games in Ft. Myers, Florida)

[Any response will receive full credit; even no response.]
