Chemistry 122
Exam 1

Winter 2007
February 1, 2007

Oregon State University
Dr. Richard Nafshun

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctorr. Open and start this exam when instructed. When finished, place your Scantron form in the appropriate stack and present your University ID Card to the proctor. You may keep the exam packet, so please show your work and mark the answers you selected on it.

$\stackrel{1}{\mathrm{H}}$ Hydrogen 1.0079																	2 He Hejum 4.0026
	Be Beryllium 9.01218											$\begin{gathered} 5 \\ \text { B } \\ \text { Boron } \\ 10.81 \end{gathered}$	6 C Carbon 12.011	$\begin{gathered} 7 \\ \mathrm{~N} \\ \text { Nitrogen } \\ 14.0067 \end{gathered}$	8 O Oxygen 15.9994	9 F Fluorine 18.9984	10 Ne Neon 20.179
$\begin{gathered} 11 \\ \mathrm{Na} \end{gathered}$ Sodium 22.98977													$\begin{gathered} 14 \\ \mathrm{Si} \\ \text { Silicon } \\ 28.0855 \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ \mathbf{P} \\ \hline \text { Phosphorus } \\ 30.97376 \end{array}$	$\begin{gathered} 16 \\ \mathrm{~S} \\ \text { Sulfur } \\ 32.06 \end{gathered}$	17 Cl Chlorine 35.453	18 Ar Argon 39.948
	20 Ca Calcium 40.08	$\begin{gathered} 21 \\ \mathrm{Sc} \\ \text { Scandium } \\ 44.9599 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ \stackrel{2}{\mathrm{Ti}} \\ \text { Titanium } \\ 47.88 \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ \text { Vanadium } \\ 50.9415 \end{gathered}$	\qquad	$\begin{gathered} 25 \\ \mathrm{Mn} \\ \text { Manganese } \\ 54.9380 \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ \text { Iron } \\ 55.847 \end{gathered}$	27 Co Cobalt 58.9332	28 Ni Nickel 58.70	29 Cu Copper 63.546	$\begin{gathered} 30 \\ \dot{\mathrm{Zn}} \\ \text { Zinc } \\ 65.38 \end{gathered}$	31 Ga Gallium 69.72	32 Ge Germanium 72.59	$\begin{gathered} 33 \\ \text { As } \\ \text { Arsenic } \\ 74.9216 \end{gathered}$	34 Se Selenium 78.96		$\begin{gathered} 36 \\ \mathrm{Kr} \\ \text { Krypton } \\ 83.80 \end{gathered}$
Rubidium 85.4678	$\begin{gathered} 38 \\ \mathrm{Sr} \\ \text { Strontium } \\ 87.62 \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Ytrium } \\ 88.9059 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ \text { Zirconium } \\ 91.22 \end{gathered}$	41 Nb Niobium 92.9064	42 Mo Molybdenum 95.94	$\begin{array}{\|c} 43 \\ \mathrm{Tc} \\ \text { Tecchneium } \\ 98.906 \end{array}$	44 Ru Ruthenium 101.07		46 Pd Palladium 106.4	$\begin{gathered} 47 \\ \mathrm{Ag} \\ \text { Silver } \\ 107.868 \end{gathered}$	48 Cd Cadmium 112.41	$\begin{gathered} 49 \\ \text { In } \\ \text { Indium } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ \mathrm{Tin} \\ 118.69 \end{gathered}$	51 Sb Antimony 121.75	52 Te Tellurium 127.60	$\begin{gathered} 53 \\ \text { I } \\ \text { lodine } \\ \text { 126.9045 } \end{gathered}$	54 Xe Xenon 131.30
55 Cs Cesium 132.9054	56 Ba Barium 137.33	$57-71$ -Rare earths	72 Hf Hafnium 178.49		$\begin{gathered} 74 \\ \mathbf{W} \\ \text { Tungsten } \\ 183.85 \end{gathered}$		76 Os Osmium 190.2	$\begin{gathered} 77 \\ \text { Ir } \\ \text { Iridium } \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ \text { Platinum } \\ 195.09 \end{gathered}$	$\begin{gathered} 79 \\ \mathrm{~A} \mathbf{u} \\ \text { Gold } \\ 196.9665 \end{gathered}$	80 Hg Mercury 200.59	81 Tl Thallium 204.37	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ \text { Lead } \\ 207.2 \end{gathered}$	83 Bi Bismuth 208.9804	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
Francium (223)		89-103 ${ }^{\dagger}$ Actinides	104 Rf Rutherfordium (261)			107 Ns Neilsbohrium (262)	108 Hs Hassium (265)		$\begin{gathered} 110 \\ \ddagger \end{gathered}$ (269)	$\stackrel{111}{\ddagger}$			114		Stable	gion?	

$\begin{gathered} 57 \\ \text { Lanhanium } \\ 138.9055 \end{gathered}$	$\begin{gathered} 58 \\ \mathrm{Ce} \\ \text { Cerium } \\ 140.12 \end{gathered}$	$\begin{array}{\|c\|} \hline 59 \\ . \operatorname{Pr} \\ \hline \text { Prasedymium } \\ \text { i40.9077 } \end{array}$	60 Nd Neodymium 144.24		$\begin{gathered} 62 \\ \mathrm{Sm} \\ \text { Samarium } \\ 150.4 \end{gathered}$	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.9254	$\begin{array}{\|c\|} \hline 66 \\ \text { Dy } \\ \text { Dysprosium } \\ 162.50 \end{array}$	Holmium 164.9304	68 Er Erbium 167,26	69 Tm Thulium 168.9342	$\begin{gathered} 70 \\ \mathrm{Yb} \end{gathered}$ Yterbium 173.04	71 Lu Lutetium 174.967
89 Ac Accinium 227.0278	90 Th Thorium 232.0381	91 Pa Protactinium 231.0359	92 U Uranium 238.029	93 Np $\substack{\mathrm{Neptunium} \\ 237.0482}$	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)		Californium (251)		100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium 259	103 Lr Lawtencium 262

Please read each exam question carefully. Terms such as correct, false, unpaired, pairs, \boldsymbol{H} - \mathbf{C}-F bond angle, \boldsymbol{H} - $\mathbf{C - H}$ angle, greatest, and smallest are used.

1. There are \qquad unpaired electrons in a ground-state oxide ion $\left(\mathrm{O}^{2-}\right)$.
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
$E \begin{cases} & \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ \frac{\uparrow \downarrow}{25} & \\ \frac{\uparrow \downarrow}{15} & \end{cases}$
2. The ground-state electron configuration of a sodium ion $\left(\mathrm{Na}^{+}\right)$is:
(A) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$
(B) $1 s^{2} 2 s^{2} 3 s^{1}$
(C) $\frac{1 s^{2} 2 s^{2} 2 p^{6}}{1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}}$
(D) $1 s^{2} 2 s^{2} 2 p^{4}$
$E \begin{cases}\frac{\uparrow \downarrow_{1}}{23} & \stackrel{\uparrow 1}{2 p} \uparrow \downarrow \\ \frac{\uparrow \downarrow_{1}}{15} & \end{cases}$
3. Consider $\mathrm{Ba}, \mathrm{As}, \mathrm{F}, \mathrm{Ge}$, and He . The atom with the largest atomic size is:
(A) Ba
(B) As
(C) F
(D) Ge
(E) He

4. Consider Mg^{2+} and Mg . Consider F^{-}, and F . Which of the following statements is correct?
(A) Mg^{2+} is -larger than Mg and F -is larger than F .
(B) Mg^{2+} is smaller than Mg and F^{-}is larger than F .
(C) $\quad \mathrm{Mg}^{2+}$ is smaller than Mg and F is smaller than F .
(D) $\quad \mathrm{Mg}^{2+}$ is larger than Mg and F^{-}is smaller than F .
(E) This question is ambiguous and cannot be answered without a data table.

$$
\begin{aligned}
& \mathrm{Mg}^{2 t} \text { is smaller than } M g-\mathrm{Mg}^{2 t} \text { has the same number of protons, but } 2 \text { fewer } e^{-} \\
& F^{-} \text {is larger than } F=F^{-} \text {has the same number of protons, but } 1 \text { greater e- }
\end{aligned}
$$

5. Ionization energy is:
(A) the energy required to separate protons from neutrons
(B) the energy required to remove an electron
(C) the energy required to pull on a parr of electrons
(D) the energy required to push two electrons together
(E) the energy required to form a Noble Gas from a Group 7 element
6. Consider an oxygen atom in the ground-state. Which of the following statements is false?
(A) An oxygen atom has 8 total electrons; 2 are core electrons and 6 are valence electrons. True
(B) The Lewis Dot Structure for an oxygen atom has 6 electrons (dots). Tine
(C) An oxygen atom is larger than a nitrogen atom. false. O is to the right, smaller than N.
(D) There are two unpaired electrons in the oxygen atom. True
(E) The oxygen atom is paramagnetic. True

7. The Lewis Dot Structure of CO_{2} depicts:
(A) There are no lone pairs of electrons
(B) There is one lone pair of electrons
(C) There are two lone pairs of electrons
(D) There are three lone pairs of electrons
(E) There are four lone pairs of electrons

8. Theritreesen
$\begin{array}{ll}\text { (A) } & 1.00 \\ \text { (B) } & 1.33 \\ \text { (C) } & 1.50 \\ \text { (D) } & 3.00 \\ \text { (E) } & 3.00\end{array}$

9. A student ($f^{\prime \prime}$) proposes the Lewis Dot Structure below for ClO_{2}^{-}. Determine the formal charges on each atom in this structure.

$$
0 \quad 0 \quad-1
$$

(A) The left oxygen has a formal charge of 0 ; the chlorine -1 ; and the right oxygen 0
(B) The left oxygen has a formal charge of -1 ; the chlorine -1 ; and the right oxygen 0
(C) The left oxygen has a formal charge of 0 ; the chlorine -1 ; and the right oxygen -1
(D) The left oxygen has a formal charge of 0 ; the chlorine 0 ; and the right oxygen -1
(E) The left oxygen has a formal charge of -1 ; the chlorine 0 ; and the right oxygeno
10. The H-O-H bond angle in water, $\mathrm{H}_{2} \mathrm{O}$, is:
(A) 180°
(B) 120°
(C) 109.5°
(D) A little greater than 109.5°
(E) A little less than 109.5°

11. The molecular geometry of CF_{4} is:
(A) bent
(B) trigonal planar
(C) trigonal pyramidal
(D) tetrahedra

(E) octahedral
12. The molecular geometry of NH_{3} is:
(A) bent
(B) trigonal planar
(C) trigonal pyramidā
(D) linear

(E) octahedral
13. The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in monofluoromethane $\left(\mathrm{CH}_{3} \mathrm{~F}\right)$ is:
(A) 90°
(B) 120°
(C) 109.5°
(D) A little greater than 109.5°
(E) A little less than 109.5°

14. The F-S-F bond angle in sulfur hexafluoride $\left(\mathrm{SF}_{6}\right)$ is:
(a) 90°
(b) 120°
(c) 109.5°
(d) A little greater than 109.5°
(e) A little less than 109.5°

15. Consider $\mathrm{O}, \mathrm{P}, \mathrm{Al}, \mathrm{Zn}$, and Fr . The atom with the greatest electronegativity is:
(A)

(B)
(C) Al
(D) Zn
(E) Fr

16. Consider the following five molecules: $\mathrm{NH}_{3}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{SF}_{6}$, and CO_{2}.

How many of these are polar molecules?

(A)	One
(B)	Two
(C)	Three
(D)	Four
(E)	Five

$$
\begin{aligned}
& 0=c=0 \\
& \text { non-polar }
\end{aligned}
$$

17. Consider ethene, $\mathrm{C}_{2} \mathrm{H}_{4}$. Ethene contains:
(A) no π-bonds
(B) one π-bond
(C) two π-bonds
(D) three π-bonds
(E) four π-bonds

18. There are 3 resonance forms for the nitrate ion $\left(\mathrm{NO}_{3}{ }^{-}\right)$.

19. Consider the molecule below and identify the correct statement.

(A) There is one carbon that has an sp^{2} hybridization scheme.
(B) There are two carbons that have sp^{2} hybridization schemes.
(C) There are three carbons that have sp^{2} hybridization schemes.
(D) There are four carbons that have sp^{2} hybridization schemes.
(E) There are five carbons that have sp^{2} hybridization schemes.
20. Consider $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{C}_{2} \mathrm{H}_{2}$. Which of these has the strongest carbon-carbon bond?
(A) $\mathrm{C}_{2} \mathrm{H}_{6}$.
$c-c$
(B) $\mathrm{C}_{2} \mathrm{H}_{4}$.
$c=c$
$C \equiv C$
21. Consider MO (Molecular Orbital Theory). For the O_{2} molecule, there are \qquad electrons in the $\sigma_{2 p}$ bonding orbital?
(A) 0
(B)
(C) (2)
(D) 3
(E) 4

22. Molecular orbital theory predicts the $\mathrm{N}_{2}{ }^{-}$ion (a minus one charge) has:
(A) no unpaired electrons
(B) one unpaired electron
(C) two unparred electrons
(D) three unpaired electrons
(E) six unpaired electrons

23. Consider MO (Molecular Orbital Theory). The F_{2} molecule is:
(A) paramagnetic
(B) diamagnetic
(C) trimagnetic
(D) tetramagnetic
(E) gymnasticmagnetic

24. Molecular orbital theory predicts the $\mathrm{O}_{2}{ }^{2+}$ ion (a positive two charge) has a bond order of:

(A) I named my cats Linus and Lewis.
(B) I aspire to be a stand up comedian.
(C) I get lots of dates by using pick-up lines that include the words polar, paramagnetic, dipole, lobes, 180 degrees, see-saw, wedge, and orbitals.
(D) My taste in music has improved.
(E) My octahedrals hurt.
[Any response will receive full credit; even no response.]
