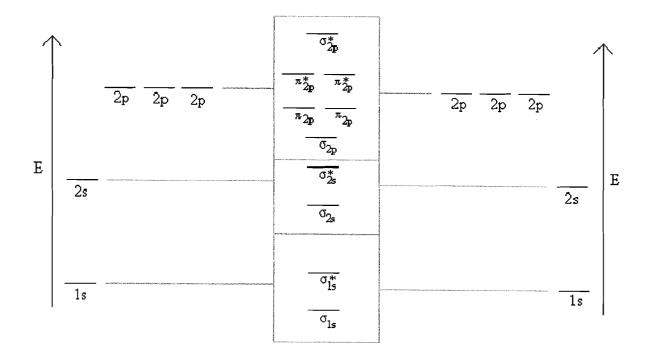
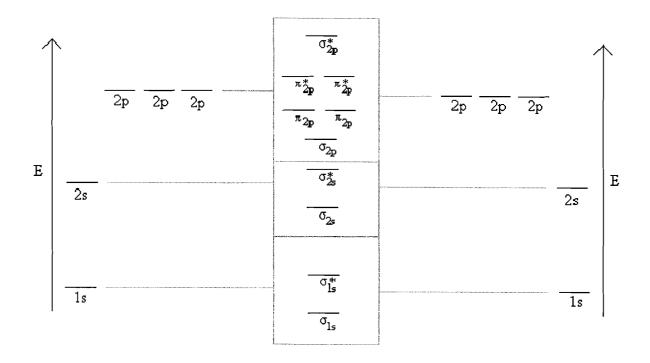
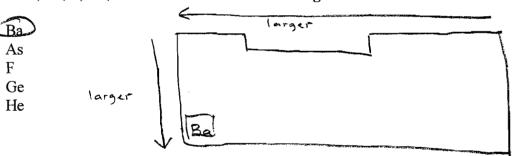
Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.


Fill in the front page of the Scantron answer sheet with your last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.


This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form in the appropriate stack and present your University ID Card to the proctor. You may keep the exam packet, so please show your work and mark the answers you selected on it.

1 H Hydrogen 1.0079		_															2 He Helium 4.0026
3	4											5	6	7	8	9	10
Li	Ве											В	C	N	О	F	Ne
Lithium	Beryllium										٠,	Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
6.941	9.01218								,			10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	.18
Na	Mg											Al	Si.	P	S	Cļ	Ar
Sodium	Magnesium											Aluminum	. Silicon	Phosphorus	Sulfur	Chlorine	Argon
22,98977	24.305					_	· .					26.9815	28.0855	30.97376	32.06	35,453	39.948
. 19 .	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Соррет	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.70	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
85.4678	87.62	88.9059	91.22	92.9064	95.94	98.906	101.07	102.9055	106.4	107.868	112.41	114.82	118.69	121.75	127.60	126.9045	131.30
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	. 84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium	Barium	Rare earths	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.9054	137.33		178.49	180.9479	183.85	186.207	190.2	192.22	195.09	196.9665	200.59	204.37	207.2	208.9804	(209)	(210)	(222)
87	88	89-103	104	105	106	107	108	109	110	111		,	114				
Fr	Ra		Rf	Ha	Sg	Ns	Hs	Mt	#	‡					→Stable r	egion?	
Francium	Radium	[†] Actinides	Rutherfordium	Hahnium		Neilsbohrium	Hassium	Meitnerium							· Stable 1	CETOII:	•
(223)	226.0254		(261)	(262)	(263)	(262)	(265)	(266)	(269)								


I	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
1	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
ł	Lanthanium	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
1	138.9055	140.12	140.9077	144.24	145	150.4	151.96	157.25	158.9254	162.50	164.9304	167,26	168.9342	173.04	174.967
[89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
ı	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
ı	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
ı	227.0278	232.0381	231.0359	238.029	237.0482	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	259	262

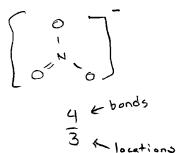
- There are ___ unpaired electrons in a ground-state oxide ion (O^2) . 1.
 - (A)
 - (B)
 - (C)
 - (D)
 - (E)
- € 1 1 1 1 1 1 2 P
- The ground-state electron configuration of a sodium ion (Na⁺) is: 2.
 - (A)
 - (B) (C)
 - (D)
 - (E)
- 3. Consider Ba, As, F, Ge, and He. The atom with the largest atomic size is:
 - (A)
 - (B)
 - (C)
 - (D)
 - (E)

- Consider Mg²⁺ and Mg. Consider F⁻, and F. Which of the following statements is correct? 4.
 - Mg²⁺ is larger than Mg and F is larger than F. (A)
 - (B)
 - Mg²⁺ is smaller than Mg and F is larger than F. Mg²⁺ is smaller than Mg and F is smaller than F. (C)
 - Mg²⁺ is larger than Mg and F⁻ is smaller than F. (D)
 - This question is ambiguous and cannot be answered without a data table. (E)

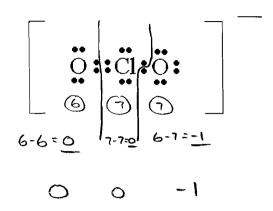
Mg 2+ is smaller than Mg - Mg 2+ has the same number of protons, but 2 fewer e-Fis larger than F - F has the same number of protons, but I greater e-

5. Ionization energy is:

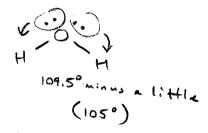
- (A) the energy required to separate protons from neutrons
- (B) (the energy required to remove an electron)
- the energy required to pull on a pair of electrons (C)
- the energy required to push two electrons together (D)
- (E) the energy required to form a Noble Gas from a Group 7 element


6. Consider an oxygen atom in the ground-state. Which of the following statements is **false**?

- (A) An oxygen atom has 8 total electrons; 2 are core electrons and 6 are valence electrons. True
- The Lewis Dot Structure for an oxygen atom has 6 electrons (dots). True (B)
- An oxygen atom is larger than a nitrogen atom, False. O is to the right, smaller than N. (C)
- There are two unpaired electrons in the oxygen atom. True (D)
- (E) The oxygen atom is paramagnetic.

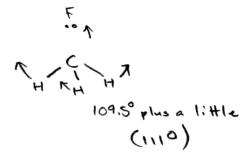

- 7. The Lewis Dot Structure of CO₂ depicts:
 - (A) There are no lone pairs of electrons
 - (B) There is one lone pair of electrons
 - There are two lone pairs of electrons (C)
 - There are three lone pairs of electrons (D)
 - There are four lone pairs of electrons (E)

The oxygen bond order in the nitrate ion (NO₃) is: 8.


- (A) 1.00
- (B) (1.33
- (C) 1.50
- (D) 2.00
- 3.00 (E)

9. A student () proposes the Lewis Dot Structure below for ClO₂. Determine the formal charges on each atom in this structure.

- (A) The left oxygen has a formal charge of 0; the chlorine -1; and the right oxygen 0
- (B) The left oxygen has a formal charge of -1; the chlorine -1; and the right oxygen 0
- (C) The left oxygen has a formal charge of 0; the chlorine -1; and the right oxygen -1
- (D) (The left oxygen has a formal charge of 0; the chlorine 0; and the right oxygen -1)
- (E) The left oxygen has a formal charge of -1; the chlorine 0; and the right oxygen 0
- 10. The H-O-H bond angle in water, H₂O, is:
 - (A) 180°
 - (B) 120°
 - (C) 109.5°
 - (D) A little greater than 109.5°
 - (E) (A little less than 109.5°



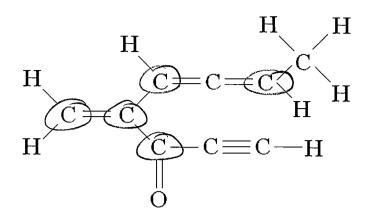
- 11. The molecular geometry of CF₄ is:
 - (A) bent
 - (B) trigonal planar
 - (C) trigonal pyramidal
 - (D) (tetrahedra)
 - (E) octahedral

- 12. The molecular geometry of NH₃ is:
 - (A) bent
 - (B) trigonal planar
 - (C) (trigonal pyramidat)
 - (D) linear
 - (E) octahedral

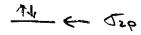
- 13. The H-C-H bond angle in monofluoromethane (CH₃F) is:
 - (A) 90°
 - (B) 120°
 - (C) 109.5°
 - (D) A little greater than 109.5°
 - (E) A little less than 109.5°

- 14. The F-S-F bond angle in sulfur hexafluoride (SF₆) is:
 - (a) 90°
 - (b) 120°
 - (c) 109.5°
 - (d) A little greater than 109.5°
 - (e) A little less than 109.5°

- 15. Consider O, P, Al, Zn, and Fr. The atom with the greatest electronegativity is:
 - (A) O (B) P
 - (C) Al
 - (C) An (D) Zn
 - (E) Fr

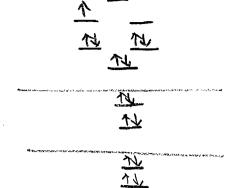

- 16. Consider the following five molecules: NH₃, O₂, O₃, SF₆, and CO₂. How many of these are **polar** molecules?
 - (A) One (B) Two
 - (C) Three
 - (D) Four
 - (E) Five

H Polar 0:00 non-polar

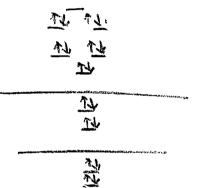

- 17. Consider ethene, C₂H₄. Ethene contains:
 - (A) no π -bonds
 - (B) (one π -bond)
 - (C) two π -bonds
 - (D) three π -bonds
 - (E) four π -bonds

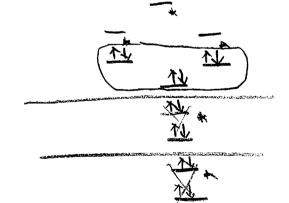
- 18. There are 3 resonance forms for the nitrate ion (NO₃).
 - (A) 0
 - (B) 1
 - (C) 2 (D) 3
 - (E) 4
- $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

19. Consider the molecule below and identify the correct statement.



- There is one carbon that has an sp² hybridization scheme. (A)
- There are two carbons that have sp² hybridization schemes. (B)
- (C)
- There are three carbons that have sp² hybridization schemes. There are four carbons that have sp² hybridization schemes. (D)
- There are five carbons that have sp² hybridization schemes. (E)
- 20. Consider C₂H₆, C₂H₄, and C₂H₂. Which of these has the strongest carbon-carbon bond?
 - (A) C_2H_6 .
- C-C
- (B) C_2H_4 .
- C = C
- (C)
- CEC
- Consider MO (Molecular Orbital Theory). For the O₂ molecule, there are 21. electrons in the σ_{2p} bonding orbital?
 - (A)
 - (B) (C)
 - (D)
 - (E)




- 22. Molecular orbital theory predicts the N₂ ion (a minus one charge) has:
 - (A) no unpaired electrons
 - one unpaired electron (B)
 - two unpaired electrons (C)
 - (D) three unpaired electrons
 - six unpaired electrons (E)

- 23. Consider MO (Molecular Orbital Theory). The F₂ molecule is:
 - (A) paramagnetic
 - diamagnetic (B)
 - (C) trimagnetic
 - (D) tetramagnetic
 - gymnasticmagnetic (E)

- Molecular orbital theory predicts the O_2^{2+} ion (a positive two charge) has a bond order of: 24.
 - (A) 0.0
 - 1.0 (B)
 - (C)
 - (D)
 - (E)

- 25. Because of Chemistry 122...
 - I named my cats Linus and Lewis. (A)
 - I aspire to be a stand up comedian. (B)
 - I get lots of dates by using pick-up lines that include the words polar, paramagnetic, (C) dipole, lobes, 180 degrees, see-saw, wedge, and orbitals.
 - My taste in music has improved. (D)
 - My octahedrals hurt. (E)

[Any response will receive full credit; even no response.]