DO NOT OPEN THIS EXAM UNTIL INSTRUCTED. CALCULATORS ARE NOT TO BE SHARED.

Test Form 2

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number blank.

This exam consists of 37 multiple-choice questions. Each question has four points associated with itexcept Question 37 which has six. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form and note card in the appropriate stacks. You may keep the exam packet, so please show your work and mark the answers you selected on it.

$\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$	$760 \mathrm{~mm} \mathrm{Hg}=760 \mathrm{torr}=1 \mathrm{~atm}$	$\mathrm{~m}=\mathrm{mol} / \mathrm{kg}$
$\mathrm{M}=\mathrm{mol} / \mathrm{L}$	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{imk}_{\mathrm{f}}$	$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{imk}_{\mathrm{b}}$
$\Pi \mathrm{V}=\mathrm{nRT}$	$\mathrm{k}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86^{\circ} \mathrm{C} / \mathrm{m}$	$\mathrm{k}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}$
$\ln \left[\frac{A}{A_{o}}\right]=-k t$	$k=A e^{\frac{-E a}{R T}}$	$\mathrm{~K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$

Fatom
Fatom
N_{2} molcule

N atam

Natam
All e^{-}are paired - diamagnetic

Please read each exam question carefully. Terms such as correct, false, unpaired, pairs, $\boldsymbol{H}-\mathrm{C}-\mathrm{F}$ bond angle, $\boldsymbol{H}-\mathrm{C}-\mathrm{H}$ angle, greatest, and smallest are used.

Unit 1 (Material Assessed on Exam 1)

1. The ground-state electron configuration of a sodium atom is:
(A)

(B) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}$
(C) $1 s^{2} 2 s^{2} 2 p^{6} 3 p^{1}$
(D) $\quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$
(E) $\quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{~s}^{3}$

2. The ground-state electron configuration of oxide $\left(\mathrm{O}^{2-}\right)$ is:
(A) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(B) $1 s^{2} 2 s^{2} 2 p^{6}$
(C) $1 s^{2} 2 s^{2} 2 p^{6} 3 p^{1}$
(D) $1 s^{2} 2 s^{2} 2 p^{4}$
(E) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{~s}^{3}$
5
1

The round state elect
3. How many valence electrons are present in an carbon atom?

4. Consider $\mathrm{F}, \mathrm{S}, \mathrm{Ge}, \mathrm{Sr}$, and O . The atom with the smallest atomic size is:
(A) ©
(B) S
(C) Ge

(D) Sr
(E) O
5. Consider $\mathrm{Ca}^{2+}, \mathrm{Ca}, \mathrm{Br}^{-}$, and Br . Which of the following two statements is correct?
(A)
Ca^{2+} is smaller than Ca .
Ca^{2+} has two fewer e-
(B) Br^{-}is smaller than Br .
than Ca , Br' has one greater e" than Br
6. The Lewis Dot Structure of PH_{3} depicts:
(A) There are no lone pairs of electrons.
(B) There is one lone pair of electrons

(C) There are two lone pairs of electrons.
(D) There are three lone pairs of electrons.
(E) There are four lone pairs of electrons.
7. The nitrogen-oxygen bond order in nitrate ion $\left(\mathrm{NO}_{3}{ }^{-}\right)$is:

8. The bond angle in CF_{4} is:
(A) 180°.

(B) 120°.
(C) 109.5°.
(D) Alittle greater than 109.5°.
(E) A little less than 109.5°.
9. The molecular geometry of water is:
(A) bent
(B) trigonal planar.

(C) trigonal pyramidal.
(D) tetrahedral.
(E) octahedral.
10. Consider $\mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{CO}_{2}, \mathrm{CH}_{4}$, and CF_{4}. Which of the following statements is correct?
(A) O_{2} is a polar molecule.
(B) O_{3} is a polar molecule.
(C) CO_{2} is a polar molecule.
(D) CH_{4} is a polar molecule.
(E) CF_{4} is a polar molecule.

11. Consider the molecule below and identify the correct statement.

(A) There is one carbon that has an sp^{3} hybridization scheme.
(B) There are two carbons that have sp hybriduation schemes.
(C) There are three carbons that have $s p$ hybridization schemes.
(D) There are four carbons that have sp^{3} hybridization schemes.
(E) There are six carbons that have sp^{3} hybridization schemes.
12. Molecular orbital theory predicts the $\mathrm{F}_{2}{ }^{-}$ion (a minus one charge) has:
(A) no unpaired electrons.
(B) one unpaired electrons.
(C) two unpaired electrons.
(D) three unpaired electrons.
(E) six unpaired electrons.
13. Consider MO (Molecular Orbital Theory). The N_{2} molecule is:
(A) diamagnetic
(B) paramagnetic
(C) trimagnetic
(D) tetramagnetic
(E) hexamagnetic
see Mo on Page 3 above -
it shows the complete scheme

Unit 2 (Material Assessed on Exam 2)

14. The phase diagram below is for:

15. Lithium fluoride melts at $848^{\circ} \mathrm{C}$. Lithium oxide melts at $1570^{\circ} \mathrm{C}$. The difference in melting points can be attributed to:
(A) Different intermolecular forces (dispersion, dipole-dipole, hydrogen bonding)
(B) Different ionic.charges (+ and -)
(C) Different distances between nuclei (d)
(D) The sheet-like structure
(E) Network covalent compounds

16. Consider the alcohol $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ [please take a moment to draw the correct structure]. The intermolecular forces present in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ are:
(A) Dispersion forces only
(B) Dispersion forces and dipole-dipole forces only
(C) Dispersion forces, dipole-dipole forces, and hydrogen bonding $\mathrm{p}^{\circ \mathrm{ur}^{*}}\left(\mathrm{ant}^{\mathrm{nt}}\right)$
(D) Hydrogen bonding only
(E) Network covalent

17. Consider $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$. Which of these does not exhibit hydrogen bonding?
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) $\quad \mathrm{NH}_{3}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$

H bonded to O, N, F, or S

18. The equivalent number of atoms in the SC unit cell is:
(A) $10 \quad 8 \times \frac{1}{8}=1$
(C) 3
(D) 4
(E) $1 / 8$
19. A student (両) obtains a 0.500 m aqueous solution of AlCl_{3}. The freezing point of his solution is:
(A) $-2.79^{\circ} \mathrm{C}$.
(B) $+2.79^{\circ} \mathrm{C}$.

e
(c) (1)
(C) $+5.58^{\circ} \mathrm{C}$.
(D) $-5.58^{\circ} \mathrm{C}$.
(E) $-3.72^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \Delta T_{f}=i \mathrm{~m} \mathrm{~K}_{f} \\
& \Delta T_{f}=(4)(0.500 \mathrm{~m})\left(1.866^{\circ} \mathrm{m}\right)=3.72^{\circ} \mathrm{C} \\
& T_{f}=0^{\circ} \mathrm{C}-3.72^{\circ} \mathrm{C}=-3.72^{\circ} \mathrm{C}
\end{aligned}
$$

20. A student (拖) dissolves 12.000 g of an unknown polymer in 800 mL of water at 320 K . He measures the osmotic pressure to be 0.0677 mm Hg . What is the molar mass of the polymer?

$$
\begin{aligned}
\text { Molar mass }=\frac{g}{m o l}=\frac{12.0009}{2.713 \times 10^{-6} \mathrm{~mol}} & =4423.940 \mathrm{~g} / \mathrm{mol} \\
& =4.42 \times 10^{6} \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

21. A student places 1.200 moles of sodium chloride into 750 g of water. The molality of the solution is:
(A) 0.667 m
(B) 1.50 m
$m=\frac{\mathrm{mol}}{\mathrm{kg}}=\frac{1.200 \mathrm{~mol}}{0.750 \mathrm{~kg}}=1.60 \mathrm{~m}$
(C) 27.4 m
(D) 0.625 m
(E) .60 m
22. A student ($\overbrace{}^{\frac{11}{2}}$) obtains a 500.0 gram sample of ${ }^{14} \mathrm{C}\left(\mathrm{t}_{1 / 2}=5730\right.$ years $)$. How long will it take so that only 125.0 grams of ${ }^{14} \mathrm{C}$ remain?
(A) 5730 years
(B) 1730 years
(C) 125.0 years
$500 \mathrm{~g} \xrightarrow[t_{1 / 2}]{ } 250 \mathrm{~g} \xrightarrow[t_{1 / 2}]{\longrightarrow} 125 \mathrm{~g}$
(D) 22920 years
$5730 y \quad 5730 y=11460 y$
(E) 11460 years
23. A student ($f\left(\begin{array}{rl} \\ (1)\end{array}\right)$ obtains a 500.0 gram sample of ${ }^{14} \mathrm{C}\left(\mathrm{t}_{1 / 2}=5730\right.$ years $)$. How long will it take so that only 475.0 grams of ${ }^{14} \mathrm{C}$ remain?
(A) 424 years
(1) Call $k \quad \ln \frac{1}{2}=-k(5730 y)$
(B) 5444 years
$k=1.2097 \times 10^{-4} \frac{1}{4}$
(C) 6032 years
(D) 287 years
(2) Cali +
(E) 6.20×10^{-6} years

$$
\begin{aligned}
& \ln \left[\frac{A}{A_{0}}\right]=-k t \\
& \ln \left(\frac{475.09}{500.09}\right)=-\left(1.2097 \times 10^{-4} \frac{1}{y}\right)(t) \\
& -0.05129=-\left(1.2097 \times 10^{-4} \frac{1}{y}\right)(t) \\
& t=424 y
\end{aligned}
$$

24. Consider calcium chloride, aluminum oxide, methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, and sodium chloride. Arranged in decreasing melting point, these are:

Lowest mp
Highest mp
(A) sodium chloride $<$ aluminum oxide $<$ methanol $<$ calcium chloride.
(B) aluminum oxide $<$ methanol $<$ calcium chloride $<$ sodium chloride.
(C) calcium chloride $<$ aluminum oxide $<$ sodium chloride $<$ methanol.
(D) sodium chloride $<$ calcium chloride $<$ aluminum oxide $<$ methanol.
(E) methanol $<$ sodium chloride $<$ calcium chloride $<$ aluminum oxide.

Unit 3 (Material Discussed after Exam 2)
25. As the reaction proceeds, the rate:
(A) increases.
(B) decreases.
(C) remains constant.

Time
26. The rate expression for the reaction: $2 \mathrm{CuS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CuO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$ is:
(A) Rate $=-2 \frac{\Delta[\mathrm{CuS}]}{\Delta t}=-3 \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=+2 \frac{\Delta[\mathrm{CuO}]}{\Delta t}=+2 \frac{\Delta\left[\mathrm{SO}_{2}\right]}{\Delta t}$
(B) Rate $=-\frac{\Delta[\mathrm{CuS}]}{\Delta t}=-\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=+\frac{\Delta[\mathrm{CuO}]}{\Delta t}=+\frac{\Delta\left[\mathrm{SO}_{2}\right]}{\Delta t}$
(C) Rate $=-[\mathrm{CuS}]=-\left[\mathrm{O}_{2}\right]=+[\mathrm{CuO}]=+\left[\mathrm{SO}_{2}\right]$
(D) Rate $=-2[\mathrm{CuS}]=-3\left[\mathrm{O}_{2}\right]=+2[\mathrm{CuO}]=+2\left[\mathrm{SO}_{2}\right]$
(E) Rate $=-\left(\frac{1}{2}\right) \frac{\Delta[\mathrm{CuS}]}{\Delta t}=-\left(\frac{1}{3}\right) \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=+\left(\frac{1}{2}\right) \frac{\Delta[\mathrm{CuO}]}{\Delta t}=+\left(\frac{1}{2}\right) \frac{\Delta\left[\mathrm{SO}_{2}\right]}{\Delta t}$
27. Which of the following is false?
(A). Increasing the temperature of a reaction will increase the rate.
(B) Increasing the number of collisions will increase the rate of reaction.
(C) Lowering the activation energy will increase the rate of reaction.
(D) An enzyme decreases the rate of a process. Increases!
(E) A catalyst lowers the activation energy of a process.
28. Based on the thermodynamic data plotted below, the activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ for the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$ is:
(A) $\quad+100 \mathrm{~kJ} / \mathrm{mol}$
(B) $+400 \mathrm{~kJ} / \mathrm{mol}$
(C) $+500 \mathrm{~kJ} / \mathrm{mol}$
(D) $\quad+600 \mathrm{~kJ} / \mathrm{mol}$

29. Which of the following does not increase the rate of the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$ where Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{2}$?
(A) an increase in A.
(B) an increase in [A].
(C) an increase in [B].
(D) an increase in Ea_{a}.
(E) an increase in T.

30. The following are initial rate data for:

$$
A+2 B \rightarrow C+2 D
$$

$\left.\begin{array}{|c|c|c|c|}\hline \text { Experiment } & \text { Initial [A] } & \text { Initial [B] } & \text { Initial Rate } \\ \hline 1 & 0.10 \\ \hline 2 & 0.20 & 0.10 \\ \hline 3 & 0.10 & 0.10 \\ \hline 2 & 0.20 & x^{2} & 0.600\end{array}\right) x^{2}$
(A) The rate law is Rate $=\mathrm{k}[\mathrm{A}]^{1}[\mathrm{~B}]^{2}$.
(B) The rate law is Rate $=\mathrm{k}[\mathrm{A}]^{0}[\mathrm{~B}]^{2}$.
(C) The rate law is Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{0}$.
(D) The rate law is Rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{1}$.
(E) The rate law is Rate $=\mathrm{k}[\mathrm{A}]^{1}[\mathrm{~B}]^{1}$.

Double $[A] \rightarrow$ Rate Doubles
$[A]^{\prime}$
Double $[B] \rightarrow$ Rate Quadruples

$$
[B]^{2}
$$

$$
\text { Rateck }[A]^{\prime}[B]^{2}
$$

31. The following reaction was allowed to come to equilibrium at 300 K . Calculate K_{c}.

$$
4 \mathrm{FeCl}_{3}(\mathrm{~g})\left(3 \mathrm { O } _ { 2 } (\mathrm { g }) \Leftrightarrow 2 \mathrm { Fe } _ { 2 } \mathrm { O } _ { 3 } (\mathrm { s }) \left(+6 \mathrm{Cl}_{2}(\mathrm{~g})\right.\right.
$$

The equilibrium concentrations were analyzed and found to be:
$\left[\mathrm{O}_{2}\right]=3.34 \mathrm{M} \quad$ and $\quad\left[\mathrm{Cl}_{2}\right]=2.07 \mathrm{M}$
$\begin{aligned} & \text { (A) } \mathrm{K}_{\mathrm{c}}=0.11 \\ & \text { (B) } \mathrm{K}_{\mathrm{c}}=0.238 \\ & \text { (C) } \mathrm{K}_{\mathrm{c}}=1.36 \\ & \text { reaceductents } \\ & \text { (D) } \\ & \left.\mathrm{K}_{\mathrm{c}}=0 . \mathrm{Cl}_{2}\right]^{6} \\ & {\left[\mathrm{O}_{2}\right]^{3}}\end{aligned}=\frac{(2.07)^{6}}{(3.34)^{3}}=\frac{78.67}{37.26}=2.11$
(D) $\quad \mathrm{K}_{\mathrm{c}}=0.795$
(E) $\quad \mathrm{K}_{\mathrm{c}}=1.43$
32. The following reaction is at equilibrium:
$2 \mathrm{HBr}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=+72 \mathrm{~kJ}$ (endothermic)
(A) The concentration of $\mathrm{Br}_{2}(\mathrm{~g})$ increases when $\mathrm{HBr}(\mathrm{g})$ is added. shift to the right
(B) The concentration of Br_{2} (g) decreases whem HBr (g) is added.
(C) The concentration of $\mathrm{Br}_{2}(\mathrm{~g})$ stays the same when $\mathrm{HBr}(\mathrm{g})$ is added. reactant is
33. The following reaction is at equilibrium:

$$
\Delta \mathrm{H}^{\mathrm{o}}=+72 \mathrm{~kJ} \text { (endothermic) }
$$

(A) The concentration of $\mathrm{HBr}(\mathrm{g})$ increases when the system is heated.
(B) The concentration of $\mathrm{HBr}(\mathrm{g})$ decreases when the system is heated
(C) The concentration of $\mathrm{HBr}(\mathrm{g})$ stays the same when the system is heated.

$$
\begin{aligned}
& \text { Heat drives an endotharemis process to the right - } \\
& \text { the reaction needs heat to go to the right and } \\
& \text { you ard providing the heat. }
\end{aligned}
$$

34. Consider the system $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{SO}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=6.76$

A student prepares the system and measures:
$\left[\mathrm{SO}_{2}\right]=1.03 \mathrm{M} \quad\left[\mathrm{CO}_{2}\right]=1.22 \mathrm{M} \quad[\mathrm{CO}]=2.93 \mathrm{M} \quad\left[\mathrm{SO}_{3}\right]=2.90 \mathrm{M}$
(A) The system is at equilibrium.
(B) The system is not at equilibrium.

$$
\begin{gathered}
Q=\frac{\text { products }}{\text { reactants }}=\frac{\left[\mathrm{CO}_{2}\left[\mathrm{SO}_{3}\right]\right.}{\left[\mathrm{mog}_{2}\right]\left[1 \mathrm{O}_{2}\right]}=\frac{(2.93)(2.90)}{(1.03(1.22)}=6.76 \\
Q=K
\end{gathered}
$$

35. The pH of $0.925 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is:
(B)
(D) $\begin{aligned} & 0.0339 . \\ & 0.925 .\end{aligned}$
(E) 2.10 .
(A) 1.00 .

$$
p H=-\log \left[H^{+}\right]=-\log (0.925 \mathrm{~m})=0.0339
$$

36. The pH of $0.925 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ is:
```
(A) 2.90
(B) 2.39 .
(C) \(\quad 1.45\).
(D) 0.925 .
(E) 4.78 .
```

```
\[
\begin{aligned}
& K_{a}=1.8 \times 10^{-5}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{\circ}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=\frac{(x) \mathrm{X})}{0.925-x)^{\text {pat }}}=\frac{x^{2}}{0.925} \\
& 1.8 \times 10^{-5}=\frac{x^{2}}{0.925} \quad x^{2}=\left(1.8 \times 10^{-5}\right)(0.925)=1.665 \times 10^{-5} \\
& x=\left[H^{+}\right]=1.66 .5 \times 10^{-5}=0.0041 \\
& p H=-\log [H+]=-\log (5.00 \% 1)=2.90
\end{aligned}
\]
```

37. Well, well, well... CH 122 is over. Now it's time to:
(A) Take CH 122 again because it was so rewarding and fun.
(B) Sleep until April.
(C) Party -but just a little. Must save energy for Spring Break.
(D) Two words: Twinkies and TextMessaging.
(E) Spend some time thinking about those things 19 year olds think of... sew, parties, friends, music, reality TV, food, mutual funds, retirement plans, taking out the trash early, golf, effective denture cleaners, and insurance.

- [Any response will receive full credit; even no response.]
- Questions 1 through 36 have four points attached ($\mathbf{1 4 4}$ total). Any responses to Question 37 will receive full credit (6 Points total); even no responses.
- The point total for this exam is $\mathbf{1 5 0}$ points. See the grade sheet or $\mathbf{C H} \mathbf{1 2 2}$ web syllabus for grade computation details.
- Final exam keys, scores, and course grades will be posted on the CH 122 website as they become available.

