DO NOT OPEN THIS EXAM UNTIL INSTRUCTED. CALCULATORS ARE NOT TO BE SHARED. ## **Test Form 3** Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room. Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number blank. This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form and note card in the appropriate stacks. You may keep the exam packet, so please show your work and mark the answers you selected on it. | | IA | | | | | | | | | | | | | | | | | VIIIA | |-----|---------------------------------|---------------------------------|-------------------------------|-------------------------------------|----------------------------------|----------------------------------|------------------------------------|---------------------------------|----------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------------|--------------------------------|--------------------------------|---------------------------------|-------------------------------|------------------------------------| | 1 | 1
H
Hydrogen
1.0079 | на | | | | | | | | | | | • тна | īVA | VA | VIA | VIIA | 2
He
Helium
4.0026 | | 2 | 3
Li
Lithium
6.941 | 4
Be
Beryllium
9.01218 | | - | | | | | | | | | 5
B
Boron
10.81 | 6
C
Carbon
12.011 | 7
N
Nitrogen
14.0067 | 8
O
Oxygen
15.9994 | 9
F
Fluorine
18.9984 | 10
Ne
Neon
20.179 | | 3 | 11
Na
Sodium
22.98977 | Mg
Mg
Magnesium
24.305 | шв | IVB | VB. | VIB | VIIB / | | VII | | \ 1B | ПВ | Al
Al
Aluminum
26.9815 | 14
Si
Silicon
28.0855 | Phosphorus
30.97376 | Sulfur
32.06 | Cl
Chlorine
35.453 | 18
Ar
Argon
39.948 | | 4 | K
Potassium
39.0983 | 20
Ca
Calcium
40.08 | Scandium 44.9559 | Ti
Ti
Titanium
47.88 | V
Vanadium
50.9415 | 24
Cr
Chromium
51.996 | 25
Mn
Manganese
54.9380 | 26
Fe
Iron
55.847 | 27
CO
Cobalt
58.9332 | 28
Ni
Nickel
58.70 | Cu
Copper
63.546 | 30
Zn
Zine
65.38 | Gallium
69.72 | Germanium 72.59 | 33
As
Arsenic
74.9216 | 34
Se
Selenium
78.96 | Bromine
79.904 | 36
Kr
Krypton
83.80 | | 5 | 37
Rb
Rubidium
85.4678 | 38
Sr
Strontium
87.62 | 39
Y
Yttrium
88.9059 | 40
Zr
Zirconium
91.22 | Nb
Niobium
92.9064 | 42
Mo
Molybdenum
95.94 | Tc
Tc
Technetium
98.906 | 44
Ru
Ruthenium
101.07 | 45
Rh
Rhodium
102.9055 | 46
Pd
Palladium
106.4 | 47
Ag
Silver
107.868 | 48
Cd
Cadmium
112.41 | 49
In
Indium
114.82 | 50
Sn
Tin
118.69 | 51
Sb
Antimony
121.75 | Te
Te
Tellurium
127.60 | 53
I
Iodine
126.9045 | 54
Xe
Xenon
131.30 | | 6 | 55
CS
Cesium
132.9054 | 56
Ba
Barium
137.33 | 57-71 *Rare earths | 72
Hf
Hafnium
178.49 | 73
Ta
Tantalum
180.9479 | 74
W
Tungsten
183.85 | 75
Re
Rhenium
186.207 | 76
OS
Osmium
190.2 | 77
Ir -
Iridium
192.22 | 78
Pt
Platinum
195.09 | 79
Au
Gold
196.9665 | Hg
Mercury
200.59 | 81
TI
Thallium
204.37 | 82
Pb
Lead
207.2 | Bi Bismuth | Po
Polonium
(209) | At Astatine (210) | 86
Rn
Radon
(222) | | · 7 | Fr. Francium (223) | 88
Ra
Radium
226.0254 | 89–103 †Actinides | 104
Rf
Rutherfordium
(261) | Ha
Hahnium
(262) | 106
Sg
Seaborgium
(263) | 107
Ns
Neilsbohrium
(262) | HS
Hassium
(265) | 109
Mt
Meitnerium
(266) | 110
‡
(269) | 111
‡ | | | 114 | >Stable region? | | | | ## Please read each exam question carefully. Terms such as correct, false, unpaired, pairs, H-C-F bond angle, H-C-H angle, greatest, and smallest are used. - 1. Which of the following statements is **false**? - (A) A 2s orbital of a carbon atom is larger than a 1s orbital of a carbon atom. - (B) A 1s orbital is spherical. - (C) A 2s orbital of a carbon atom is higher in energy than a 1s orbital of a carbon atom. - (D) A 2s orbital of a carbon atom is lower in energy than a 2p orbital of a carbon atom. - 2. The nitride ion (N³⁻) and _____ are isoelectronic (have the same number of electrons). - (A) O. - (B) N^{3+} - (C) P. - $\begin{array}{cccc} \underline{\text{(D)} & \text{N.}} \\ \underline{\text{(E)} & \text{O}^2} \end{array}$ - N3- and O2- have 10 electrons. - 3. The ground-state electron configuration of a nitrogen atom is: - (A) $1s^22s^23s^23p^1$. - (B) $1s^2 2s^2 3s^4$. - (C) $1s^2 2s^2 2p^5$. - (D) $(1s^22s^22p^3)$ - (E) $1s^2 2s^2 3s^3$. - $\frac{1}{2s} \frac{1}{1s^2} \frac{1}{2s^2} \frac{1}{2p^3}$ - 4. The ground-state electron configuration of a fluoride ion (F') is: - (A) $1s^22s^23s^23p^2$. - (B) $1s^2 2s^2 3s^1$. - (C) $1s^22s^22p^4$. - (D) $1s^22s^22p^63s^23p^2$. - (E) $(1s^22s^22p^6)$. - $\begin{array}{c|c} \hline & 11 & 11 & 11 \\ \hline & 11 & 11 \\ \hline & 12 & 11 \\ \hline & 12 & 12 & 12 \\ \hline & 12 & 12 & 12 \\ \hline & 13 & 12 & 12 & 1$ - 5. How many valence electrons are present in a carbon atom? - $(A) \qquad 0.$ - (B) 2. - (C) 4. - (D) 6. - (E) 8. E 1 t 1 - 2p Valence e - OR .C. The Core e- - (A) B. - C. (B) - (C) N. - (D) - (E) Consider Mg²⁺, Mg, F⁻, and F. Which of the following statements is **correct**? 7. - Mg^{2+} is larger than Mg. F is larger than F. (A) - (B) F is larger than F - same number of P F has one greater e- - There are no lone pairs of electrons. (A) - There is one lone pair of electrons. (B) - There are two lone pairs of electrons. (C) - There are three lone pairs of electrons. (D) - There are four lone pairs of electrons. (E) 9. The nitrogen-oxygen bond order in the nitrate ion (NO₃⁻) is: - (A) 1.00. - (1.33.)(B) - (C) 1.50. - (D) 1.75. - (E) 2.00. as a Lewis Structure for the carbonate ion. - (A) Carbon has a formal charge of 0 and the top oxygen has a formal charge of 0. - (B) Carbon has a formal charge of +1 and the top oxygen has a formal charge of 0. - (C) Carbon has a formal charge of 0 and the top oxygen has a formal charge of +1. - (D) Carbon has a formal charge of +1 and the top oxygen has a formal charge of -1. - (E) Carbon has a formal charge of -1 and the top oxygen has a formal charge of +1. - 11. The H-N-H bond angle in ammonia, NH₃, is: - (A) 180°. - (B) 120°. - (C) 109.5°. - (D) A little greater than 109.5°. - (E) (A little less than 109.5°. - 12. The F-S-F bond angle in SF₆ is: - (A) 90°. - (B) 120°. - (C) 109.5°. - (D) A little greater than 109.5°. - (E) A little less than 109.5°. - 13. The molecular geometry of CF₄ is: - (A) bent. - trigonal planar. (B) - trigonal pyramidal. (C) - (D) (tetrahedral.) - octahedral. (E) - The H-C-H bond angle in monofluoromethane (CH₃F) is: 14. - 90°. (A) - 120°. (B) - (C) 109.5°. - A little greater than 109.5°. (D) - A little less than 109.5°. (E) For Fluorine is pulling This pair of eaway from the Central atom. H-C-H bond angle H-c-H bond angle This allows the is 109.50 plus a little. Hatoms to move us - Consider Fr, C, N, F, and O. The atom with the greatest electronegativity is: 15. - (A) Fr. - (B) C. - (C) - (D) - (E) - 16. Consider H₂O, CH₃F, NH₃, CO₂, and NO. Which is a non-polar molecule? - (A) H_2O . - CH₃F. (B) - (C) NH_3 . - (D) (- (E) NO. - Consider CH₄, CF₄, CCl₄, and NH₃. Which of the following statements is **correct**? 17. - CH₄ contains only **nonpolar covalent bonds**. (A) - CF₄ contains only **nonpolar covalent bonds**. (B) - CCl₄ contains only nonpolar covalent bonds. (C) - NH₃ contains only **nonpolar covalent bonds**. (D) (E) Every bond in these four molecules is - CH₄, CF₄, CCl₄, and NH₃ contain only **polar covalent bonds**. - Consider the molecule below and identify the **correct** statement. 18. > C-C longer C=C longer C=C - There are two carbons that have sp² hybridization schemes. (A) - There are three carbons that have sp^2 hybridization schemes. There are four carbons that have sp^2 hybridization schemes. (B) - (C) - There are five carbons that have sp² hybridization schemes. (D) - There are six carbons that have sp² hybridization schemes. (E) - 19. Consider ethene, C_2H_4 . Ethene contains: (D) three π -bonds. 20. Consider C₂H₆, C₂H₄, and C₂H₂. Which of these has the **longest** carbon-carbon bond? (A) $$\widehat{C_2H_6}$$ (C) $$C_2H_2$$. (A) $$C_2H_6$$. (B) C_2H_4 . (C) C_2H_2 . H H H - 21. Consider MO (Molecular Orbital Theory). For the H₂ molecule, there are electrons in the σ_{1s} bonding orbital? - (A) - (B) - (C) - (D) - (E) - E TIS TV - 22. Molecular orbital theory predicts the F₂ ion (a minus one charge) has: - 23. Consider MO (Molecular Orbital Theory). The N₂ molecule is: - 24. Molecular orbital theory predicts the O_2^- ion (a minus one charge) has a bond order of: - (A) I put all my CDs in my friend's microwave oven and I have no more music to listen to. I guess I'll have to purchase an iPod. - (B) I blackout when I hear the name "Lewis." - (C) I blackout when I hear the words "ChemSkill Builder." - (D) My octahedrals hurt. - (E) I understand the nature of the universe. [Any response will receive full credit; even no response.]