-hemistry 121
Final Exam

Fall 2007
December 4, 2007

Oregon State University Dr. Richard Nafshun

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 40 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form and note card in the appropriate stacks. You may keep the exam packet, so please show your work and mark the answers you selected on it.

centi $(\mathrm{c})=1 / 100$	milli $(\mathrm{m})=1 / 000$	kilo (k) $=1000$
micro $(\mu)=10^{-6}$	nano (n) $=10^{-9}$	$1 \mathrm{~mole}=6.022 \times 10^{23}$
1 inch $=2.54 \mathrm{~cm}$ (exact)	$1 \mathrm{~kg}=2.2$ pounds	1 foot $=12$ inches (exact)
$\mathrm{K}=273.15+{ }^{\circ} \mathrm{C}$	$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ Torr	
Hydroxide OH^{-}	Cyanide CN^{-}	Nitrate $\mathrm{NO}_{3}{ }^{-}$
Acetate $\mathrm{CH}_{3} \mathrm{COO}^{-}$	Carbonate $\mathrm{CO}_{3}{ }^{2-}$	Phosphate $\mathrm{PO}_{4}{ }^{3-}$
Hydronium $\mathrm{H}_{3} \mathrm{O}^{+}$	Ammonium $\mathrm{NH}_{4}{ }^{+}$	Sulfate $\mathrm{SO}_{4}{ }^{2-}$
Abbreviated Solubility Rules: Rule 1:All nitrates, group 1A metal salts and ammonium salts are soluble: Rule 2:All carbonates, hydroxides, phosphates and sulfides are insoluble. Rule 3:Rule 1 always takes precedent.		
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$	$\mathrm{M}_{\text {acid }} \mathrm{V}_{\text {acid }}=\mathrm{M}_{\text {base }} \mathrm{V}_{\text {base }}$	$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$
$\mathrm{R}=0.0821 \frac{\mathrm{~L} \bullet \mathrm{~atm}}{\mathrm{~mol} \bullet \mathrm{~K}}$	$\mu_{r m s}=\sqrt{\frac{3 R T}{\text { Molar Mass }}}$	$\mathrm{R}=8.314 \frac{\mathrm{~kg} \bullet \mathrm{~m}^{2}}{\mathrm{~s}^{2} \bullet \mathrm{~mol} \bullet K}$
$\mathrm{PV}=\mathrm{nRT}$	$\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$	$\mathrm{q}=\mathrm{m} \Delta \mathrm{H}$
$\mathrm{E}=\mathrm{q}+\mathrm{w}$	$\mathrm{R}_{\mathrm{H}}=2.180 \times 10^{-18} \mathrm{~J} /$ photon	$\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	$\nu=\frac{c}{\lambda}$	$\mathrm{E}=\mathrm{h} v$
 * Values are estimated based o	 averages over the temperature range	Specific Heat $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)^{*}$ Solid Liquid Gas 2.26 2.20 1.46 1.20 1.90 117 0.96 2.10 1.71 1.30 2.40 1.30 209 418 1.38

57 La Lanthanium 138.9055	58 Ce Cerium 140.12	$\|$59 Pr Prsedymuium 140.9077	$\begin{array}{\|c\|} \hline 60 \\ \mathrm{Nd} \\ \text { Neodymium } \\ 144.24 \end{array}$	$\begin{array}{\|c\|} \hline 61 \\ \text { Pm } \\ \text { Promehium } \\ \hline 145 \\ \hline \end{array}$	$\begin{gathered} 62 \\ \mathrm{Sm} \\ \text { Samaxium } \\ \text { Sano. } \end{gathered}$	$\begin{gathered} 63 \\ \text { Eul } \\ \text { Europium } \\ 151.96 \end{gathered}$	64 Gd Gadolinium 157.25		$\begin{gathered} 66 \\ \text { Dy } \\ \text { Dysprosium } \\ 162.50 \end{gathered}$	67 Ho Holmium 164.9304	68 Er Erbium 167.26	69 Tm Thulium 168.9342	$\begin{gathered} 70 \\ \mathbf{Y b} \\ \text { Y Yterbium } \\ 173.04 \end{gathered}$	
${ }^{8} 9$ Ac Actinium 227.0278		$\|$91 Pa Potaccinium 231.0359	$\begin{gathered} 92 \\ \mathbf{U} \\ \text { Uraniunt } \\ \text { 238.029 } \end{gathered}$	$\begin{array}{\|c\|} 93 \\ \mathrm{~Np} \\ \text { Neppunium } \\ 237.0482 \end{array}$	$\underset{\substack{\text { Plutonium } \\(244)}}{94}$	$\underset{\substack{\text { Americium } \\ \text { (243) }}}{95}$	96 Cm Curium (247)	$\begin{array}{\|c} 97 \\ \mathrm{Bk} \\ \text { Berkelium } \\ (247) \end{array}$	$\begin{array}{\|c\|} \hline 98 \\ \mathrm{Cf} \\ \text { Califonium } \\ \text { (25i) } \end{array}$	$\begin{array}{\|c} 99 \\ \text { ES• } \\ \text { Einseteinum } \\ (254) \end{array}$	$\begin{gathered} 100 \\ \text { Fmermium } \\ (257) \end{gathered}$	$\begin{array}{\|c} 101 \\ \mathrm{Md} \\ \text { Mendeleyium } \\ (258) \\ \hline \end{array}$	$\begin{gathered} 102 \\ \text { No } \\ \text { Nobeclium } \\ 259 \end{gathered}$	103 $\mathbf{L r}$ Lewrencium 262

1. A student measures a sample of sodium chloride to be 45.233 g . Another student measures a sample of lithium fluoride to be 1231.43 g . Added together, the sum of these samples is (with the proper number of significant figures):
(A) 1276.663 g
(B) 1276.66 g
(C) 1276.7 g
(D) $\quad 1277 . \mathrm{g}$
(E) $\quad 1.28 \times 10^{3} \mathrm{~g}$

2. Fill in the blank. The ratio of $\frac{\text { neutrons }}{\text { protons }}$ \qquad as the atomic number increases.
(A) increases.
(B) decreases
(C) stays the same

3. Which of the following chemical formulae is incorrect?
(A) $\quad \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

(C)
(D) $\mathrm{Na}_{2} \mathrm{~S}$
(E) CaCO_{3}
4. ${ }^{208} \mathrm{~Pb}^{2+}$ has:
(A) 208 protons, 206 neutrons, 208 electrons
(B) 208 protons, 208 neutrons, 206 electrons
(C) 82 protons, 126 neutrons, 80 electrons

208
(D) 82 protons, 126 neutrons, 84 electrons
(E) 126 protons, 126 neutrons, 124 electrons
$82 p$

$$
\begin{aligned}
& 208-82=126 n \\
& 82-2=80 e^{-}
\end{aligned}
$$

5. The mass percent composition of oxygen in $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is:

(A)	4.676%
(B)	56.12%
(C)	25.00%
(D)	14.03%
(E)	18.71%

$$
\begin{aligned}
& 2 \mathrm{Al}=2 \times 26.989 / \mathrm{mol}=53.96 \% \mathrm{~mol} \\
& 35=3 \times 32.06^{3} / \mathrm{ms} 1=96.189 / \mathrm{mol} \\
& 120=12 \times 16.005 / \mathrm{mol}=192.00 \mathrm{~g} / \mathrm{mol} \\
& \% \text { oxygen }=\frac{192,00 \% / \mathrm{mol}}{342.14 \% / \mathrm{mel}}=56.12 \% \\
& \text { whole }
\end{aligned}
$$

6. The two stable isotopes of bowlium are Bl-323 (mass $=323.045 \mathrm{amu}$ and a percent abundance of 67.22%) and Bl-325 (mass $=325.011 \mathrm{amu}$ and a percent abundance of 32.78%). What is the average mass of bowlium?
(A) 323.7 amu
(B) 324 amu
(C) 324.03 amu
(D) 2203 amu
(E) 315.1 amu
$(0.6722)(323.045 \mathrm{amu})+(0.3278)(325.011 \mathrm{amu})=323.7 \mathrm{amu}$
7. The chemical formula of ammonium sulfide is:

8. Which of these pairs of elements would be most likely to form an ionic compound?
(A) P and Br
\downarrow
(B) Cr and K
(C) C and O
metal pius non-metal
(D) Ca and O
(E) Al and Rb

$$
\begin{aligned}
& \text { Ca-metal } \\
& \text { O-mon-metal }
\end{aligned}
$$

9. The names of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ and CCl_{4} are:
(A) magnesium nitrate and carbon tetrachloride)
(B) magnesium nitride and carbon tetrachloride
(C) magnesium dinitrate and carbon tetrachloride
(D) magnesium dinitride and carbon tetrachloride
(E) monomagnesium dinitride and carbon tetrachloride
10. Provide the coefficients needed to balance the following combustion equation:

$$
\begin{aligned}
& \mathrm{a} \mathrm{C}_{9} \mathrm{H}_{20}(\mathrm{l})+\mathrm{b} \mathrm{O} 2(\mathrm{~g}) \rightarrow \mathrm{c} \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{dH}_{2} \mathrm{O}(\mathrm{~g}) \\
& \xrightarrow{1 \mathrm{C}_{9} \mathrm{H}_{2} \mathrm{O}}+\underbrace{14 \mathrm{O}}_{4} \rightarrow \underbrace{9 \mathrm{CO}_{2}}_{28}+\underbrace{10 \mathrm{H}_{2} \mathrm{O}}_{\text {ariagen atoms }} \\
& \begin{array}{l}
28 \\
\text { oxygenatans }
\end{array}
\end{aligned}
$$

(A)	$a=1$	$b=14$	$c=9$	$d=20$
(B)	$\mathrm{a}=2$	$\mathrm{~b}=9$	$\mathrm{c}=18$	$\mathrm{~d}=40$
(C)	$\mathrm{a}=1$	$\mathrm{~b}=9$	$\mathrm{c}=18$	$\mathrm{~d}=20$
(D)	$\mathrm{a}=1$	$\mathrm{~b}=10$	$\mathrm{c}=9$	$\mathrm{~d}=20$
(E)	$\mathrm{a}=1$	$\mathrm{~b}=14$	$\mathrm{c}=9$	$\mathrm{~d}=10$

11. A student obtains 450.4 grams of ribose, $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}(\mathrm{~s})$. How many ribose molecules are present?
(A) 7.226×10^{24} ribose molecules \searrow
(B) 2.408×10^{24} ribose molecules
(C) 3.601×10^{24} ribose molecules
(D) 1.807×10^{24} ribose molecules
(E) 1.204×10^{24} ribose molecules

$$
\begin{aligned}
& 5 \times C \Rightarrow 5 \times 12.0119 / \mathrm{mol}=60.05 \mathrm{~mol} \\
& 10 \times H \Rightarrow 10 \times 1.00799 / \mathrm{mol}=10.089 / \mathrm{mol} \\
& 5 \times 0=5 \times 16.00^{9} / \mathrm{mol}=\frac{80.00 \% / \mathrm{mol}}{150.139 / \mathrm{mal}}
\end{aligned}
$$

$450.4 \mathrm{~g} \mathrm{C} \mathrm{C}_{5} \mathrm{H}_{10}\left(\frac{1 \mathrm{~mol}}{156.13 \mathrm{~g}}\right)=3.000 \mathrm{~mol} \mathrm{Cl}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$
$3.000 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{10} 0_{5}\left(\frac{6.022 \times 10^{23} \mathrm{molcecul}}{1 \mathrm{~mol}}\right)=1.807 \times 10^{24}$ molecules
12. A student reacts 309.74 grams of $\mathrm{P}_{4}(\mathrm{~s})$ in an excess amount of oxygen. How many grams of $\mathrm{P}_{2} \mathrm{O}_{5}$ (s) are produced?

$$
\mathrm{P}_{4}(\mathrm{~s}) \quad+5 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})
$$

309.74 g

2.500 mol \square mol
(1) $309.74 \mathrm{~g} \mathrm{Pm}\left(\frac{1 \mathrm{~mol}}{123.909}\right)=2.500 \mathrm{~mol} \mathrm{P} 4$
(2) $2.500 \mathrm{~mol}_{4}\left(\frac{2 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}}{1 \mathrm{~mol}}\right)=5.000 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}$
(3) $5.000 \mathrm{molP}_{2} \mathrm{O}_{5}\left(\frac{141.95 \mathrm{~g}}{1 \mathrm{~mol}}\right)=709.79 \mathrm{~g} \mathrm{P} \mathrm{P}_{2} 05$
(A) 283.89 grams of $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})$ are produced
(B) grams of $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})$ are produced 709.79 g
(C) 1419.5 grams of $\mathrm{P}_{2} \mathrm{O}_{5}$ (s) are produced
(D) 2839.0 grams of $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})$ are produced
(E) 5677.9 grams of $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})$ are produced
13. The mass of a single argon atom is:
(A) 39.948 grams
(B) $39.948 \times 10^{-23} \mathrm{grams}$
(C) $6.6337 \times 10^{-23} \mathrm{grams}$
$39.948 \frac{\mathrm{~g}}{\mathrm{~mol}}\left(\frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { Aratass }}\right) \cdot 6.6337 \times 10^{-23} \frac{\mathrm{~g}}{\text { atom }}$
(D) 1.995×10^{-23} grams
(E) 5.014×10^{-22} grams
14. A student (搝) obtains 340.72 grams of gold. This is:
(A) 1.73 gold atoms
(B) 2.05×10^{26} gold atoms
(C) 4.04×10^{28} gold atoms
(D) $\frac{1.04 \times 10^{24} \text { gold atoms }}{2.87 \times 10^{-24} \text { gold atoms }}$
(E) 2.87×10^{-24} gold atoms.
$340.72 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{196.97 \mathrm{~g}}\right)\left(\frac{6.022 \times 10^{23} \mathrm{atoms}}{1 \mathrm{~mol}}\right)=1.04 \times 10^{24} \mathrm{atoms}$
15. There are 6.753×10^{23} penicillin molecules in 375.0 g of penicillin. What is the molar mass of penicillin?
(A) $334.4 \mathrm{~g} / \mathrm{mol}$
(B) $180.08 \mathrm{~g} / \mathrm{mol}$
(C) $555.3 \mathrm{~g} / \mathrm{mol}$
(D) $420.5 \mathrm{~g} / \mathrm{mol}$
(E) The answer cannot be calculated without the molecular formula of penicillin.

$$
\begin{aligned}
& 6.753 \times 10^{23} \text { molecules }\left(\frac{1 \text { mole }}{6.022 \times 10^{23} \text { molecules }}\right)=1.12 \mathrm{~mol} \\
& \text { Molar Mass }-\frac{3}{\mathrm{~mol}}=\frac{375.0 \mathrm{~g}}{1.12 \mathrm{~mol}}=334.4 \frac{\mathrm{~mol}}{}
\end{aligned}
$$

Unit 2 (Material Assessed on Exam 2)

16. A student 6 places 58.66 g of a gas into a $45.0-\mathrm{L}$ container at 305 K and measures the pressure to be 1.02 atm . This gas is:
(A) $\mathrm{O}_{2}(\mathrm{~g})$
(B) $\mathrm{N}_{2}(\mathrm{~g})$
$P Y=n R T$
(C) $\quad \mathrm{Cl}_{2}(\mathrm{~g})$
(D) $\quad \mathrm{H}_{2}(\mathrm{~g})$

$$
n=\frac{P V}{R T}=\frac{(1.02 \mathrm{~atm}(45.0 \mathrm{~L})}{(0.0231 .0 t \mathrm{~m} Y}=1.83 \mathrm{~mol}
$$

(E) $\quad \mathrm{He}(\mathrm{g})$

$$
\text { Molar Mass }=\frac{\mathrm{g}}{\mathrm{~mol}}=\frac{58.66 \mathrm{~g}}{1.83 \mathrm{~mol}}=32.00 \% / \mathrm{mol}=0_{2}
$$

17. What is the density (in g / L) of $\mathrm{F}_{2}(\mathrm{~g})$ at 280 K and 690 mm Hg ?
(A) $0.666 \mathrm{~g} / \mathrm{L} \quad P V=n R T$

(D) $3.24 \mathrm{~g} / \mathrm{L}$
(E) $\quad 32.0 \mathrm{~g} / \mathrm{L}$

$$
\left(\frac{690 \mathrm{~mm} \mathrm{Hg}}{\frac{760 \mathrm{mmHg}}{1 \mathrm{~atm}}}\right)
$$

$$
\begin{aligned}
& 1 \mathrm{~mol} F_{2}=38.00 \mathrm{~g} \\
& d=\frac{9}{L}=\frac{38.00 \mathrm{~g}}{25.32 \mathrm{~L}}=1.50 \frac{\mathrm{~g}}{\mathrm{~L}}
\end{aligned}
$$

18. A student obtains a 3.20 liter balloon at $20.0^{\circ} \mathrm{C}$ and 0.900 atm . She cools the balloon to $10.0^{\circ} \mathrm{C}$. The volume of the balloon at $10.0^{\circ} \mathrm{C}$ is:
(A) 0.324 L

293 K
283 K
(B) 1.60 L
$\begin{array}{ll}\text { (C) } \\ \text { (D) } \\ \text { (E) } \\ 84.4 \mathrm{~L} \mathrm{~L}\end{array} \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \frac{3.20 \mathrm{~L}}{293 \mathrm{~K}}=\frac{V_{2}}{283 \mathrm{~K}}$

$$
v_{2}=3.09 \mathrm{~L}
$$

19.

Consider the following five gases: $\mathrm{F}_{2}(\mathrm{~g})$
$\mathrm{CO}_{2}(\mathrm{~g})$

$\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{Xe}(\mathrm{g})$
Of these, the gas with the highest velocity at room temperature is:
(A) $\quad \mathrm{F}_{2}(\mathrm{~g})$
(B) $\quad \mathrm{CO}_{2}(\mathrm{~g})$
$\stackrel{\Delta}{ }$ lightest
(C) $\mathrm{He}(\mathrm{g})$
(D) $\quad \mathrm{Cl}_{2}(\mathrm{~g})$
(E) $\quad \mathrm{Xe}(\mathrm{g})$
20. A student combusts 4.000 moles of octane gas, $\mathrm{C}_{8} \mathrm{H}_{18}$. How many liters of $\mathrm{CO}_{2}(\mathrm{~g})$ are produced at a pressure of 1.00 atm and a temperature of 298 K ?

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(1) $4.000 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{8}\left(\frac{16 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{CH}} \mathrm{m}_{8}\right)=32.000 \mathrm{~mol} \mathrm{CO}$
(8) PV=nRT $\left\lvert\, V=\frac{n R T}{P}=\frac{(32,000 \mathrm{~mol})\left(0.0821 \frac{L-t m}{m o l \cdot k}\right)(298 \mathrm{~K})}{1 a+m}=783 \mathrm{~L}\right.$
(A) $783 \mathrm{~L}^{\text {of } \mathrm{CO}_{2} \text { are produced }}$
(B) $97.9 \mathrm{~L}^{\circ} \mathrm{CO}_{2}$ are produced
(C) 6.12 L of CO_{2} are produced
(D) 52461 L of CO_{2} are produced
(E) 1566 L of CO_{2} are produced
21. A sample of $\mathrm{He}(\mathrm{g})$ is observed to effuse through a porous barrier in 2.77 minutes. Under the same conditions, the same number of moles of an unknown gas requires 7.33 minutes to effuse through the same barrier. Which of the following is the unknown gas?
(A) $\mathrm{O}_{2}(\mathrm{~g})$

$$
\frac{\text { time }_{1}}{\text { time }_{2}}=\frac{\sqrt{\text { molar mass }^{\prime}}}{\sqrt{\text { molar mass }_{2}}}
$$

(D) $\mathrm{H}_{2}(\mathrm{~g})$
(E) $\quad \mathrm{Xe}(\mathrm{g})$

$$
\frac{2.77 \mathrm{~min}}{7.33 \mathrm{man}}=\frac{\sqrt{49 / \mathrm{mol}}}{\sqrt{\mathrm{molam} \mathrm{man}}}
$$

$$
\text { Molar Mass a } 28 g_{m o l} N_{2}
$$

22. A system gives off 550 kJ of heat and does 450 kJ of work. The change in the internal energy of the system is:
(A) +100 kJ
(B) -100 kJ
(C) $\quad+1000 \mathrm{~kJ}$
(D) +247500 kJ

$$
\begin{aligned}
\Delta E & =q+w \\
& =(-550 \mathrm{~kJ})+(-450 \mathrm{~kJ})=-1000 \mathrm{~kJ}
\end{aligned}
$$

23. Which of the following processes is exothermic?
(A) $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (g)
(B) $\quad 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g})$
(C) $\mathrm{H}_{2} \mathrm{O}$ (l) $\rightarrow \mathrm{H}_{2} \mathrm{O}$ (s)
(D) $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$
(E) $\quad \mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& \text { heat is removed }(\text { exiting }) \\
& \text { to make ice from } H_{2} 0(Q)
\end{aligned}
$$

24. How much heat is required to raise the temperature of 250 grams of ethanol from $23.0^{\circ} \mathrm{C}$ to $60.0^{\circ} \mathrm{C}$?
(A) 9250 kJ

$$
q=m c \Delta T
$$

(B) 9.25 kJ
(C) 15.0 kJ
$q=(250 \mathrm{~g})\left(2.10 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}\right)\left(60.0^{\circ} \mathrm{C}-23.0^{\circ} \mathrm{C}\right)$
(D) 5.75 kJ
(E) $\quad 19.4 \mathrm{~kJ}$
右 $=19,425 \mathrm{~J}$ or 19.4 kJ
25. The heat of formation $\left(\Delta \mathrm{H}^{\circ} \mathrm{f}\right)$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ (s) is $-925 \mathrm{~kJ} / \mathrm{mol}$. The chemical equation associated with this reaction is:
(A) $\quad \mathrm{Mg}(\mathrm{s})+2 \mathrm{O}(\mathrm{g})+2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$
(B) $\quad \mathrm{Mg}(\mathrm{s})+2\left(\mathrm{OH}^{-}\right)(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$
(C) $\quad \mathrm{Mg}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$
(D) $\quad \mathrm{Mg}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$
(E) $\mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}$ (s)

26. 25 kJ of heat will cause a 200.0 gram sample of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ to increase from $0.0^{\circ} \mathrm{C}$ to:
(A) $5000^{\circ} \mathrm{C}$
(B) $0.125^{\circ} \mathrm{C}$

$$
\text { (E) } 8.00^{\circ} \mathrm{C}
$$

$$
\begin{gathered}
5: m \mathrm{mat} \\
25.9005=<20 \\
T_{4}=29.9^{\circ} \mathrm{C}
\end{gathered}
$$

27. Determine $\Delta \mathrm{H}^{\circ}$ for: $2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \rightarrow 6 \mathrm{Fe}(\mathrm{s})+4 \mathrm{O}_{2}(\mathrm{~g})$ using the following two equations:
(1) $4 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
(2) $6 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 12 \mathrm{Fe}(\mathrm{s})+9 \mathrm{O}_{2}(\mathrm{~g})$

$$
\begin{array}{ll}
\Delta \mathrm{H}_{1}^{\circ}=-650 \mathrm{~kJ} \\
\Delta \mathrm{H}_{2}^{\circ}=+6906 \mathrm{~kJ} & \div 2
\end{array}
$$

$$
2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\frac{1}{2} \phi_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta H_{1}=\frac{-650 \mathrm{~kJ}}{2}
$$

$$
+\quad 3 \mathrm{FeNO}_{3}(\mathrm{~s}) \rightarrow 6 \mathrm{Fe}(\mathrm{~s})+\frac{2}{2} \mathrm{Q}_{2}(\mathrm{~g}) \quad 0 H_{2}^{\prime}=\frac{6906 \mathrm{~kJ}}{2}
$$

$$
2 F_{3} O_{4}(g)=6 \mathrm{Fe}_{\mathrm{g}}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H=+3128 \mathrm{~kJ}
$$

(A) -6256 kJ
(B) +6256 kJ
(C) +3128 kJ
(D) -3128 kJ
(E) +7556 kJ
28. Consider the mixture of two aqueous solutions: one of sodium sulfate and one of calcium nitrate. The net ionic equation for the process that occurs is:

(A) $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})$
(B) $\mathrm{Ca}^{-2+}(\mathrm{aq})+\mathrm{NO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ (s)
(C) $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{aq})$
(D) $\quad 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}$ (s)
(E) $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$

$$
\mathrm{Ca}^{2+}(a q)+\mathrm{SO}_{4}^{2-}(a q) \rightarrow \mathrm{CaSO}_{4}(5)
$$

29. Consider the electromagnetic spectrum. Which of the following statements is FALSE?
(A) Green light is lower in energy than x-rays.
(B) Red light has a longer wavelength than x-rays.
(C) Blue light haas a higher frequency than x-rays.
(D) Ked light and x-rays travel at the same velocity.

30. The frequency of green photons having a wavelength of 520 nm is:
(A) $5.77 \times 10^{14} \frac{1}{s} \quad V=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \frac{5}{5}}{520 \times 10^{-9}}=5.77 \times 10^{14} \frac{1}{5}$
(C) $5.20 \times 10^{-9} \frac{1}{s}$
(D) $5.20 \times 10^{5} \frac{1}{s}$
(E) $\quad 5.76 \times 10^{5} \frac{1}{s}$
31. The energy of one mole of red photons having a wavelength of 685 nm is:

$$
\text { For } \begin{gathered}
1 \mathrm{~mol} \Rightarrow 2.90 \times 10^{-19} \frac{\mathrm{~J}}{\text { photon }} \times 6.022 \times 10^{23} \frac{\text { photons }}{\text { mole }}= \\
E=174,770 \mathrm{~J} / \mathrm{mol} \text { or } 175 \mathrm{ks} / \mathrm{mol}
\end{gathered}
$$

32. Consider the Bohr Model for the Hydrogen Atom. Which of the following electron transitions releases the most energy?

33. Consider the Bohr Model for the Hydrogen Atom. Which of the following electron transitions releases electromagnetic radiation with the greatest frequency?
(A) $\mathrm{n}=7$ to $\mathrm{n}=6$
\downarrow
(B) $\mathrm{n}=6$ to $\mathrm{n}=5$
(C) $\mathrm{n}=5$ to $\mathrm{n}=4$
greatest energy
(D) $n=4$ to $n=3$
(E) $n=3$ to $n=2$
34. Which of the following sets of quantum numbers is INCORRECT?
(A) $\mathrm{n}=1,1=0, \mathrm{~m}_{1}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
(B) $\mathrm{n}=1, \mathrm{l}=0, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=-1 / 2$
(C) $\quad \mathrm{n}=2,1=0, \mathrm{~m}_{1}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
(D) $n=2,1=1, m_{1}=2, m_{s}=+1 / 2$
(E) $\mathrm{n}=2, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=-1, \mathrm{~m}_{\mathrm{s}}=+1 / 2$

When

$$
n=2
$$

lean be 1
however, when l is $1, m_{e}=-1,0,+1$ (canno the 2)
35. Which set of four quantum numbers describes the orbital pictured below?

(A) $\mathrm{n}=1, \mathrm{l}=0, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
(B) $\mathrm{n}=1,1=0, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=-1 / 2$
(C) $\mathrm{n}=2,1=0, \mathrm{~m}_{1}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
(D) $n=2,1=1, m_{1}=0, m_{s}=+1 / 2$
(E) $\mathrm{n}=2, \Gamma=2, \mathrm{~m}_{1}=0, \mathrm{~m}_{\mathrm{s}}-\cdots+1 / 2$
36. Consider an electron (mass of $9.10939 \times 10^{-31} \mathrm{~kg}$) traveling at $1 / 40^{\text {th }}$ the speed of light. Which of the following statements is correct?
(A) The wavelength of the e^{-}is $5.22 \times 10^{-9} \mathrm{~m}$ and this has practical significance.
(B) The wavelength of the e^{-}is $5.22 \times 10^{-9} \mathrm{~m}$ and this does not have practical significance.
(C) The wavelength of the e^{-}is $1.21 \times 10^{-10} \mathrm{~nm}$ and this has practical significance.
(D) The wavelength of the e is $9.70 \times 10^{-11} \mathrm{~m}$ and this has practical significance.
(E) The wavelength of the e^{-}is $9.70 \times 10^{-11} \mathrm{~m}$ and this does not have practical significance.

$$
\lambda=\frac{h}{M y}=\frac{6.626 \times 10^{-34} \mathrm{~J} .5}{\left(9.105 \times 10^{-21} \times \frac{1}{40} \times 3.00 \times 10^{8} \frac{m}{5}\right)}=\begin{aligned}
& 9.70 \times 10^{-11} \mathrm{~m} \text { and } \\
& \text { this has pratisal } \\
& \text { significmect for } \\
& \text { an e }
\end{aligned}
$$

37. deBroglie's proposition regarding the nature of matter was:
(A) The wavelength of electromagnetic radiation is proportional to the energy
(B) All photons are in the visible region of the electromagnetic spectrum
(C) The frequency of electromagnetic radiation is equal to the energy
(D) All masses in motion exhibit a wavelength
(E) The mass of x-ray photons are greater than the mass of red light photons
38. The ground-state electron configuration of a fluorine atom is: $F\left(G e^{-}\right)$

39. The ground-state electron configuration of a fluoride ion (F) is:

$$
F^{-}=9+1=10 e^{-}
$$

(A) $\quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$
(B) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{~s}^{1}$
(C) $\frac{1 s^{2} 2 s^{2} 2 \mathrm{p}^{6}}{1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}}$
(E) $\quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$

40. Because of CH 121...
(A) I dream of electrons, orbitals, and Hayden Panettiere and/or Patrick Dempsey
(B) I love cats and dogs; but not OWLs
(C) 1 like corn flakes
(D) I had the periodic table of the elements tattooed on my butt
(E) $\begin{aligned} & \text { I now understand the nature of the universe and use this knowledge to increase my } \\ & \text { popularity }\end{aligned}$

Questions 1 through 40 each have 4 points attached. Any response to Question 40 will receive full credit (4 Points); even no response.

The point total for this exam is 160 points. See the grade sheet or CH 121 web syllabus for grade computation details.

Final exam keys, scores, and course grades will be posted on the CH 121 website as they become available.

Have an excellent and safe Winter Break $)$

