Chemistry 121 Exam 1

Fall 2007
October 18, 2007

Oregon State University
Dr. Richard Nafshun

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form and note card in the appropriate stacks. You may keep the exam packet, so please show your work and mark the answers you selected on it.

LA	1 inch $=2.54 \mathrm{~cm}$ (exact)					$10 \mathrm{dm}=1 \mathrm{~m}$						$100 \mathrm{~cm}=1 \mathrm{~m}$					
		0 mm	$=1 \mathrm{~m}$			$1000 \mathrm{~m}=1 \mathrm{~km}$$1000 \mathrm{~mL}=1 \mathrm{~L}$						$10 \mathrm{~mm}=1 \mathrm{~cm}$					
	$1 \mathrm{~mole}\left(\mathrm{~N}_{\mathrm{A}}\right)=6.022 \times 10^{23}$																
												Hï	IvA	va	viA	vina	$\stackrel{2}{\mathrm{He}}$ $\underset{\text { Helium }}{\mathrm{He}}$ 4.0026
$\begin{gathered} 3 \\ \mathrm{Li} \\ \substack{\text { Libium } \\ \text { 6.941 }} \\ \hline \end{gathered}$	 Beeylluam 9.01218											$\begin{gathered} 5 \\ \text { B } \\ \text { Boron } \\ 10.81 \end{gathered}$		$\begin{gathered} 7 \\ \mathrm{~N} \\ \begin{array}{c} \text { Nirogen } \\ \text { 14.067 } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ 0 \\ 0 \\ \text { Oxygen } \\ \text { 159994 } \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ \text { F } \\ \text { Fluorine } \\ \text { 18.984 } \\ \hline \end{gathered}$	$\begin{array}{r} 10 \\ \mathrm{Ne} \\ \text { Neon } \\ \text { No.n9 } \\ \hline \end{array}$
$\begin{gathered} \hline 11 \\ \mathrm{Na} \\ \text { sadium } \\ 2298977 \\ \hline \end{gathered}$		me	rve	vB	Vib	vIIB		vir		18	${ }^{\text {IB }}$	$\begin{gathered} \hline 13 \\ \text { Al } \\ \text { Aluminum } \\ 26.9815 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ \mathrm{Si} \\ \mathrm{Si} \\ \substack{\text { Silicon } \\ 28.085 \\ \hline} \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ \hline \mathbf{P} \\ \text { Phoshons } \\ 30.97376 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 16 \\ \mathrm{~S} \\ \text { Suftre } \\ 32.06 \\ \hline \end{array}$	$\begin{gathered} \hline 17 \\ \mathrm{Cl} \\ \begin{array}{c} \text { Chorne } \\ \text { 35.4s3 } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ \text { Argan } \\ \text { Argon } \\ \hline 39.48 \\ \hline \end{gathered}$
$\begin{gathered} \hline 19 \\ \mathrm{~K} \\ \text { Potassium } \\ 39.0983 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \mathrm{Calcium} \\ \text { caus } \\ 40.08 \end{gathered}$	$\begin{array}{\|c\|} \hline 21 \\ \mathrm{Sc} \\ \text { Scandium } \\ 44.959 \\ \hline \end{array}$	$\begin{gathered} \hline \frac{22}{22} \\ \mathrm{Ti} \\ \substack{\text { Titarium } \\ 47.88} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 23 \\ \mathrm{~V} \\ \begin{array}{c} \text { Vandium } \\ \text { 50.4415 } \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline 24 \\ \hline \begin{array}{c} 24 \\ \text { Crovium } \\ \text { chon } \\ \text { s.l.996 } \end{array} \\ \hline \end{gathered}$		$\begin{aligned} & 26 \\ & \text { Fe } \\ & \text { Iron } \\ & 55.897 \end{aligned}$	$\begin{gathered} { }^{27} \\ \text { Co } \\ \text { Cobat } \\ 58.8322 \end{gathered}$	$\begin{gathered} \hline 28 \\ \mathrm{Ni} \\ \mathrm{Ni} \\ \text { Nickel } \\ 58.70 \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 \\ { }^{29} \\ \text { Cuper } \\ 63.56 \\ \hline \end{gathered}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \\ & \mathrm{Zninc} \\ & \text { zise } \\ & 65.38 \end{aligned}$	$\begin{gathered} 31 \\ \mathrm{Ga} \\ \text { Callium } \\ \text { C9.72 } \\ 69 \end{gathered}$		33 As Asenic A49216	$\begin{gathered} \hline 34 \\ \mathrm{Se} \\ \text { Sexniom } \\ \text { } 78.96 \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ \text { Bromine } \\ 79.904 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36 \\ \hline \begin{array}{c} 36 \\ \text { Kyppon } \\ 83.80 \\ \hline \end{array} \\ \hline \end{gathered}$
	$\begin{gathered} 38 \\ \mathrm{Sr} \\ \text { Stonium } \\ 87.62 \\ \hline \end{gathered}$	$\begin{gathered} \hline 39 \\ \text { Y } \\ \text { Yruium } \\ 88.959 \end{gathered}$	$\begin{gathered} \hline 40 \\ \mathrm{Zr} \\ \mathrm{Z}_{\text {ironium }} \\ 99.22 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 41 \\ \mathrm{Nb} \\ \mathrm{Nb} \\ \text { Nobium } \\ \text { 929064 } \\ \hline \end{array}$		43 Tc Techneeium 98.906	$\begin{array}{\|c\|} \hline 44 \\ \mathrm{Ru} \\ \text { Ruhenium } \\ 101.07 \\ \hline \end{array}$		46 Pd Palladium 106.	$\begin{gathered} 47 \\ \mathrm{Ag} \\ \text { silver } \\ \text { 107.88 } \end{gathered}$		$\begin{gathered} \hline 49 \\ \text { In } \\ \text { Indium } \\ \text { Ind.82 } \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 51 \\ \mathrm{Sb} \\ \text { Animany } \\ \text { in:78 } \\ \hline \end{array}$	$\begin{gathered} \hline 52 \\ \mathrm{Te} \\ \text { Tellurum } \\ \text { T27.50 } \\ \hline \end{gathered}$	53 I Iodine I26.9045	54 Se Xenon Xen 131.30
$\begin{gathered} \hline 55 \\ \mathrm{Cs} \\ \text { Casium } \\ 132.9054 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ \mathrm{Ba} \\ \begin{array}{c} \text { Baium } \\ 137.33 \\ \hline \end{array} \mathrm{c} \end{gathered}$	${ }^{57-71}$	${ }^{72}$ Hf Hafrium 178.49	$\begin{array}{\|c\|} \hline 73 \\ \hline \text { Ta } \\ \text { Tanalaum } \\ \text { 180.449 } \\ \hline \end{array}$	74 $\stackrel{74}{W}$ Tungsen i83.85 18	75 Re Re Reneium 188.207	$\begin{gathered} \hline 76 \\ \text { Os } \\ \text { Osmium } \\ \text { 199.2 } \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ \mathrm{Ir} \\ \text { Inditium } \\ \text { i9222 } \\ \hline \end{gathered}$	$\begin{gathered} 78 \\ \begin{array}{c} 78 \\ \mathrm{Pt} \\ \text { Plainum } \\ \text { 195.09 } \end{array} \end{gathered}$	$\begin{gathered} 79 \\ \mathrm{Au} \\ \substack{\text { cold } \\ \text { cos.965 }} \end{gathered}$	$\begin{gathered} \mathrm{Bo} \\ \substack{\mathrm{Hg} \\ \mathrm{Mecrur} \\ \text { 200.s9 }} \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{Tl} \\ \begin{array}{c} \text { Thallium } \\ \text { To4.37 } \end{array} \end{gathered}$	$\begin{aligned} & \hline 82 \\ & \mathrm{~Pb} \\ & \text { Lead } \\ & 200.2 \\ & \hline \end{aligned}$	83 Bi Bismuuh 208.9804	84 Po Polonium (209)		86 Rn Radon (22)
87 Fr Fraccium (223)		${ }_{\text {89-103 }}$	104 Rf Rubeforofium (261)	105 Ha Hamium C202	106 Sg Seaboribium 123$)^{2}$		$\begin{gathered} \hline 108 \\ \text { Hs } \\ \text { Hassium } \\ \text { (265) } \\ \hline \end{gathered}$	109 Mt Meinerium (266)	110 \ddagger (269)	$\stackrel{111}{\ddagger}$			${ }^{114}$		\rightarrow Stable	gion?	

1. A student measures the length of a green crystal to be 0.091470 m .
(A) There are seven significant figures in this measured quantity.
(B) There are six significant figures in this measured quantity.
(C) There are five significant figures in this measured quantity.
(D) There are four significant figures in this measured quantity.
(E) There are three significant figures in this measured quantity.

2. A student combines 12.1 g of iron chloride and 16421.03 g of nickel oxalate. The mass of the mixture (with the proper number of significant figures) is:
(A) 16433.13 g
(B) 16433.1 g
(C) $16433 . \mathrm{g}$
(D) $1.643 \times 10^{4} \mathrm{~g}$
(E) $\quad 1.64 \times 10^{4} \mathrm{~g}$

3. Which of the following statements is FALSE?
(A) Protons and neutrons are located inside the nucleus.
(B) The nucleus occupies about 99.9% of the volume of the atom.
(C) Electrons carry a negative charge; protons carry a positive charge.
(D) A neutral atom has an equal number of protons and electrons.
(E) An electron is roughly $1 / 2000^{\text {th }}$ the mass of a neutron.
4. Which of these pairs of elements would most likely combine to form a molecule?
(A) He and Li
(B) Ne and F
\downarrow
Non-metals-but
(C) Mg and Sr
not inert gases
(D) K and Br
(E) S and F
5. Which of these pairs of elements would be most likely to form an ionic compound?
(A) P and Br
(B) Cr and K
(C) C and O
(D) Rb and Al
(E) Li and O
6. Which of the following figures best represents stable isotopes?

7. A student measures the volume of a Potassium Trioxalatoferrate (III) crystal to be 0.05320 inches ${ }^{3}$. Expressed in mm^{3}, this volume is:
(A) $1.351 \times 10^{-3} \mathrm{~mm}^{3}$
(B) $8.718 \mathrm{~mm}^{3}$
(C) $1.351 \times 10^{-6} \mathrm{~mm}^{3} \quad 0.05320 \mathrm{in}^{3}\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{im}}\right)^{3}\left(\frac{10 \mathrm{~mm}}{\mathrm{~cm}}\right)^{3^{3}}=$
(D) $1.351 \mathrm{~mm}^{3}$
$871.8 \mathrm{~mm}^{3}$
8. The two stable isotopes of beaverium are Bv-281 (mass $=281.103 \mathrm{amu}$ and a percent abundance of 23.55%) and $\mathrm{Bv}-283$ (mass $=283.192 \mathrm{amu}$ and a percent abundance of 76.45%). What is the average mass of beaverium?
(A) $282.7 \mathrm{amu}(281.103 \mathrm{amu})(0.2355)+(283.192 \mathrm{amu})(0.7645)=$
(C) 282.2 amu
(D) 282.1 amu
282.7 amu
(E) $\quad 281.9 \mathrm{amu}$
9. Consider $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$. Each unit contains:
(A) One nitrogen ion, four hydrogen ions, one phosphorous ion, and four oxide ions
(B) Twelve ammonium ions, one phosphorous ion, and four oxide ions
(C) Three sodium ions, one phosphorus ion, and four oxide ions
(D) Three ammonium ions and one phosphate ion
(E) Three ammonium ions and four phosphate ions

$$
\begin{aligned}
& 3 \mathrm{NH}_{4}^{+} \text {ions (ammonium ions) } \\
& \text { and } \\
& 1 \mathrm{PO}_{4}^{3-} \text { ion } \\
& \text { (phosphate ion) }
\end{aligned}
$$

10. A student places 731.77 grams of an irregularly shaped piece of metal into 56.22 mL of water in a graduated cylinder. The water level rises to 120.75 mL . The metal is:
(A) $\mathrm{Al}(\mathrm{d}=2.72 \mathrm{~g} / \mathrm{mL})$
(B) $\quad \mathrm{Cr}(\mathrm{d}=7.25 \mathrm{~g} / \mathrm{mL})$
(C) $\quad(\mathrm{Pb}(=11.34 \mathrm{~g} / \mathrm{mL})$
$d=\frac{m}{v}=\frac{731.77 \mathrm{~g}}{120.75 \mathrm{ml}-56.22 \mathrm{ml}}=11.34 \mathrm{~g} / \mathrm{mL}$
(D) $\quad \mathrm{Au}(\mathrm{d}=19.28 \mathrm{~g} / \mathrm{mL})$
(E) $\quad \mathrm{Pt}(\mathrm{d}=21.46 \mathrm{~g} / \mathrm{mL})$
11. ${ }^{241} \mathrm{Am}^{2+}$ has:
(A) 95 protons, 241 neutrons, 95 electrons

12. Which of the following sets of elements are expected to have similar properties?
(A) Sulfur and phosphorous
(B) Sulfur and oxygen
\downarrow
(C) Sulfur and fiuorme
(D) Sulfur and chlorine
(E) Sulfur and argon
13. Which of the following chemical formulae is incorrect?
(A) $\quad \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B) MgO
(C) $\mathrm{Ca}\left(\mathrm{CO}_{3}\right)_{2}$

(D) $\mathrm{Na}_{2} \mathrm{~S}$
(E) $\quad \mathrm{KNO}_{3}$

$\mathrm{Na}^{+} \mathrm{S}^{2-}$

$$
\mathrm{K}^{+} \mathrm{NO}_{3}
$$

14. The name of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is:
(A) calcium nitrate calcium nitrate
(B) calcium nitride
(C) calcium dinitrate
(D) calcium dinitride
(E) monocalcium dinitride
15. Two elements that will form $2+$ ions in ionic compounds are:
(A) $\quad \mathrm{N}$ and P
(B) O and S

Group 2
(C) Cl and Br
(D) Ba and Ca
(E) Na and K
16. The mass percent compositions of the elements in dimethyl ether, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, are:
(A) $\mathrm{C}=12.011 \%$
$\mathrm{H}=1.0079 \%$
$\Downarrow_{\text {Molar Mass }}=46.07 \% / \mathrm{mol}$
(B) $\mathrm{C}=24.022 \%$
$\mathrm{H}=6.0474 \%$
$\mathrm{O}=15.999 \%$
(C) $\mathrm{C}=26.07 \%$
$\mathrm{H}=2.188 \% \quad \mathrm{O}=15.999 \%$
(D) $\mathrm{C}=52.14 \% \quad \mathrm{H}=13.13 \% \quad \mathrm{O}=34.73 \%$
(E) $\mathrm{C}=41.39 \% \quad \mathrm{H}=3.473 \% \quad \mathrm{O}=55.14 \%$

$$
\begin{aligned}
& C \Rightarrow \frac{2 * 12.0119 / \mathrm{mol}}{46.099 / \mathrm{mol}}=0.5214 \text { or } 52.14 \% \\
& H \Rightarrow \frac{6 \times 1.0079 \mathrm{~g} / \mathrm{mol}}{46.079 / \mathrm{mol}}=0.1313 \text { or } 13.13 \% \\
& 0 \Rightarrow \frac{1 * 16.009 / \mathrm{mol}}{46.079 / \mathrm{mol}}=0.3473 \text { or } 34.73 \%
\end{aligned}
$$

17. Which of the following pairs are isotopes?
(A) ${ }^{12} \mathrm{C}$ and ${ }^{12} \mathrm{C}$.
(B) ${ }^{14} \mathrm{C}$ and ${ }^{14} \mathrm{~N}$.
(C) ${ }^{12} \mathrm{C}$ and ${ }^{14} \mathrm{~N}$.
(E) ${ }^{14} \mathrm{C}$ and ${ }^{28} \mathrm{Si}$.

$$
\begin{aligned}
& Y \text { same element (same number of } \\
& \text { protons) but different number } \\
& \text { of neutrons. }
\end{aligned}
$$

18. Provide the coefficients needed to balance the following combustion equation:

(A)
(B)

$\mathrm{a}=1$	$\mathrm{~b}=11$	$\mathrm{c}=7$	$\mathrm{~d}=8$
$\mathrm{a}=2$	$\mathrm{~b}=11$	$\mathrm{c}=7$	$\mathrm{~d}=8$
$\mathrm{a}=7$	$\mathrm{~b}=22$	$\mathrm{c}=14$	$\mathrm{~d}=16$
$\mathrm{a}=1$	$\mathrm{~b}=22$	$\mathrm{c}=7$	$\mathrm{~d}=8$
$\mathrm{a}=2$	$\mathrm{~b}=11$	$\mathrm{c}=14$	$\mathrm{~d}=8$

19. Consider the following reaction: $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

In a given experiment, the theoretical yield of $\mathrm{H}_{2}(\mathrm{~g})$ for the above reaction is 7.00 g . If the reaction actually produces 2.50 g hydrogen gas, what is the percent yield for the reaction?
$\begin{array}{lll}\text { (A) } & 0.50 \% & \text { Percent yield }=\left[\begin{array}{l}\text { actual } \\ \text { (B) } \\ \text { theoretical }\end{array}\right](100 \%)=\left[\frac{2.50 \%}{7.00 \%}\right. \\ \text { (C) } 17.7 \% & & 100 \%)=\end{array}$
(D) 50.0%
(E) 35.7%
35.71%
20. Consider the following reaction: $4 \mathrm{P}(\mathrm{s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$

How many moles of $\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$ are produced from 8 moles of $\mathrm{P}(\mathrm{s})$ in an excess amount of $\mathrm{O}_{2}(\mathrm{~g})$?
(A) $1 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}$ (s)
(B) $2 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}$ (s)
(C) $4 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}$ (s)
(D) $8 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}$ (s)
$8 \mathrm{molP}\left(\frac{1 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}}{4 \mathrm{molP}^{2}}\right)=2 \mathrm{~mol} \mathrm{P}_{4} \mathrm{O}_{10}$
(E) $16 \mathrm{~mol} \mathrm{P} \mathrm{P}_{4} \mathrm{O}_{10}$ (s)
21. The mass of a single carbon atom is:
(A) 12.011 grams
(B) 6.022×10^{23} grams
(C) $6.022 \times 10^{-23} \mathrm{grams}$
(D) 1.995×10^{-23} grams
(E) 5.014×10^{-22} grams
22. A student places 6.750 grams of sodium chloride into a 5.000 liter volumetric flask and fills to the mark with water. What is the molarity (a unit of concentration) of the solution?
(A) 1.350 M
(B) 0.02310 M
(C) 43.29 M
(D) $\quad 0.7407 \mathrm{M}$
(E) $\quad 0.6022 \mathrm{M}$
$12.011 \mathrm{~g} / \mathrm{mol}\left(\frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { atoms }}\right)=1.995 \times 10^{-23} \frac{\mathrm{~g}}{\text { aton }}$

$$
6.750 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{58.45 \mathrm{~g}}\right)=0.1155 \mathrm{~mol}
$$

$$
M=\frac{\mathrm{mol}}{L}=\frac{0.1155 \mathrm{~mol}}{5.000 \mathrm{~L}}=0.02310 \mathrm{M}
$$

23. A student obtains 100.0 grams of $\mathrm{H}_{2} \mathrm{O}$ (1). How many water molecules are present?
(A) $3.342 \times 10^{24} \mathrm{H}_{2} \mathrm{O}$ molecules
(B) $3.601 \times 10^{24} \mathrm{H}_{2} \mathrm{O}$ molecules
(D) $6.684 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
(E) $1.204 \times 10^{24} \mathrm{H}_{2} \mathrm{O}$ molecules

$$
\begin{aligned}
& 100.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\left(\frac{1 \mathrm{~mol}}{18.02 \mathrm{~g}}\right)=5.549 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& 5.549 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\left(\frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol}}\right)=3.342 \times 10^{24} \mathrm{H}_{2} \mathrm{O} \text { molecules }
\end{aligned}
$$

24. A student combusts 220.48 grams of propane, $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$, in an excess amount of oxygen. How many grams of $\mathrm{H}_{2} \mathrm{O}$ (g)are produced?

(1) $220.48 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}\left(\frac{1 \mathrm{~mol}}{44.096 \mathrm{~g}}\right)=5.000 \mathrm{~mol}^{1 \mathrm{C}_{3} \mathrm{H}_{8}}$
(2) $5.000 \mathrm{~mol}\left(\frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{Hg}_{8}}\right)=20.000 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
(3) $20.000 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\left(\frac{18.02 \mathrm{~g}}{1 \mathrm{~mol}}\right)=360.4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
(A) 5.0000 grams of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are produced
(B) 20.000 grams of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are produced
(C) 360.32 grams of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are produced
(D) 90.100 grams of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are produced
(E) 22.525 grams of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are produced
25. Because of Chemistry 121...
(A) I get lots of dates by using pick-up lines that include the words charge, centimeters, molecules, charge, neutrons, metalloids, ions, and combustion.
(B) My appreciation for art has increased.
(C) I have laughed more times in the past three weeks than I have in the previous three years.
(D) I have_completely forgotten about Lindsay Lohan -at least until 3 seconds ago!
(E) I am able to love again
