Chemistry 121
Final Exam

Fall 2006
December 6, 2006

Oregon State University Dr. Richard Nafshun

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 40 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form and note card in the appropriate stacks. You may keep the exam packet, so please show your work and mark the answers you selected on it.

centi $(\mathrm{c})=1 / 100$	milli $(\mathrm{m})=1 / 000$	kilo $(\mathrm{k})=1000$
micro $(\mu)=10^{-6}$	nano $(\mathrm{n})=10^{-9}$	1 mole $=6.022 \times 10^{23}$
1 inch $=2.54 \mathrm{~cm}($ exact $)$	$1 \mathrm{~kg}=2.2$ pounds	1 foot $=12$ inches (exact)
$\mathrm{K}=273.15+{ }^{\circ} \mathrm{C}$	$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ Torr	
Hydroxide OH^{-}	Cyanide CN^{-}	Nitrate $\mathrm{NO}_{3}{ }^{-}$
Acetate $\mathrm{CH}_{3} \mathrm{COO}^{-}$	Carbonate $\mathrm{CO}_{3}{ }^{2-}$	Phosphate $\mathrm{PO}_{4}{ }^{3-}$
Hydronium $\mathrm{H}_{3} \mathrm{O}^{+}$	Ammonium $\mathrm{NH}_{4}{ }^{+}$	Sulfate $\mathrm{SO}_{4}{ }^{+-}$

Abbreviated Solubility Rules:

Rule 1:All nitrates, group 1A metal salts and ammonium salts are soluble.
Rule 2: All carbonates, hydroxides, phosphates and sulfides are insoluble.
Rule 3:Rule 1 always takes precedent.

$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$		$\mathrm{M}_{\text {acid }} \mathrm{V}_{\text {acid }}=\mathrm{M}_{\text {base }} \mathrm{V}_{\text {base }}$	$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$
$\mathrm{R}=0.0821 \frac{\mathrm{~L} \bullet \mathrm{~atm}}{\mathrm{~mol} \bullet \mathrm{~K}}$		$\mu_{r m s}=\sqrt{\frac{3 R T}{\text { Molar Mass }}}$	$\mathrm{R}=8.314 \frac{\mathrm{~kg} \bullet \mathrm{~m}^{2}}{\mathrm{~s}^{2} \bullet \mathrm{~mol} \bullet \mathrm{~K}}$
$\mathrm{PV}=\mathrm{nRT}$		$\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$	$\mathrm{q}=\mathrm{m} \Delta \mathrm{H}$
$\mathrm{E}=\mathrm{q}+\mathrm{w}$		$\mathrm{R}_{\mathrm{H}}=2.180 \times 10^{-18} \mathrm{~J} /$ photon	$\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$		$v=\frac{c}{\lambda}$	$\mathrm{E}=\mathrm{h} \nu$
	MP (C) 95.1 5.41 -112 -57.0 0.00 ed on	Heat (0) (JIg) BP $\left({ }^{\circ} \mathrm{C}\right)$ Heat (v) $(\mathrm{J} / \mathrm{g})$ 96.7 56. 520 126 80.1 394 100 $78 / 9$ 852 182 126 339 334 100 2260	

Lanthanium 138.9055	58 Ce Cerium 140.12	59 Pr Prascodymium 140.9077	60 Nd Neodymium 144.24	61 Pm. Promechium 145	62 Sm Samarium 150.4	Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.9254	$\begin{gathered} 66 \\ \text { Dy } \\ \text { Dysprosium } \\ 162.50 \end{gathered}$	67 Ho Holmium 164.9304	68 Er Erbium 167,26		$\begin{gathered} 70 \\ \mathrm{Yb} \end{gathered}$ Yuertium 173.04	71 Lu Lutetium 174.967
$\begin{gathered} 89 \\ \mathrm{Ac} \end{gathered}$ Actinium 227.0278		91 Pa Protactinium 231.0359	92 U Uranium 238.029	Neptunium 237.0482	94 Pu Plutonium (244)	95 AII Americium (243)	96 Cm Curium (247)	Berkelium (247)	98 Cf Califormium (251)	Einsteinium (254)	Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium 259	103 Lr Lawrencium 262

1. A student measures the mass of a sample of calcium carbonate to be 21.720 grams.
(A) There are two significant figures in this measured quantity.
(B) There are three significant figures in this measured quantity.
(C) There are four significant figures in this measured quantity.
(D) There are five significant figures in this measured quantity.
(E) There are six significant figures in this measured quantity.
2. A student measures a rectangle to be 20.2 cm by 5.533 cm . The area of the table (with the proper number of significant figures) is:
(A) $1.1 \times 10^{2} \mathrm{~cm}^{2}$
(B) $112 . \mathrm{cm}^{2}$
(C) $111.8 \mathrm{~cm}^{2}$
(D) $111.77 \mathrm{~cm}^{2}$
(E) $111.767 \mathrm{~cm}^{2}$
$20.2 \mathrm{~cm} * 5.533 \mathrm{~cm}=\underbrace{111.7666 \mathrm{~cm}^{2}}_{\substack{\text { Must report } \\ \text { sig figs }}}$
$112 . \mathrm{cm}^{2}$
3. Which of the following chemical formulae is incorrect?
(A) $\quad \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad \mathrm{Mg}^{2+} \quad \mathrm{PO}_{4}{ }^{3 \cdot}$
(B) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{Ca}^{2+} \mathrm{NO}_{3}^{-}$
(C) BaCO_{3}
(D) $\mathrm{Li}_{2} \mathrm{O}$
(E) AlN_{3}

AIN is okay
$\mathrm{Ba}^{2+} \mathrm{CO}_{3}^{2-}$

4. $\quad{ }^{99} \mathrm{Tc}^{2+}$ has:
(A) 43 protons, 99 neutrons, 43 electrons
(B) 99 protons, 43 neutrons, 41 electrons
(C) 43 protons, 56 neutrons, 41 electrons
(D) 43 protons, 56 neutrons, 45 electrons
(E) 99 protons, 99 neutrons, 45 electrons

$43 \leftarrow$	$43 p$
$T_{c} \quad 99-43=56 n$	
	$43 e^{-}-2 e^{-}=41 e^{-}$

5. Which of the following statements is FALSE?
(A) When combined with a metal, oxygen will tend to gain two electrons. - True -Grou 16
(B) When combined with a metal, neon will tend to gain one electron. - FALSE - Inert Gas
(C) When combined with a non-metal, sodium will tend to loose one electron. - true-Group 1
(D) When combined with a non-metal, calcium will tend to loose two electrons. - True -Group 2
(E) When combined with a non-metal, aluminum will tend to loose three electrons. - True-Group 3
6. The mass percent composition of lithium in LiNO_{3} is:
(A) 20.00%
(B) 18.78%
(C) 33.33%
$\begin{aligned} \text { (D) } \frac{6.941 \%}{10.07 \%} \% & =\frac{6.941}{68.95} \cdot 100 \% \\ & =10.07 \%\end{aligned}$

7. Which of the following pairs are isotopes?
(A)

(B) Different number of nesetrons
(C) ${ }^{14} \mathrm{C}$ and ${ }^{14} \mathrm{~N}$
(D) ${ }^{235} \mathrm{U}$ and ${ }^{238} \mathrm{Pu}$
(E) ${ }^{14} \mathrm{C}$ and ${ }^{28} \mathrm{Si}$
8. Which of the following compounds contains an element with the incorrect number of bonds?

(A)

(B)

(C)

3 bonds in

(D)
(E)
9. The chemical formula of calcium phosphate is:
(A) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \mathrm{Ca}_{4}^{3-}$
(B) $\mathrm{Ca}_{2}\left(\mathrm{PO}_{4}\right)_{3}$
(C) CaPO_{8}
(D) $\mathrm{Ca}_{3} \mathrm{P}_{2}$
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(E) $\quad \mathrm{Ca}_{2} \mathrm{P}_{3}$
10. The names of $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ and SF_{6} are:

(A) aluminum carbide and sulfur fluoride
(B) aluminum tricarbonate and sulfur hexafluoride
(C) dialuminum tricarbonate and monosulfur fluoride
(D) dialuminum tricarbonate and monosulfur hexafluoride
(E) aluminum carbonate and sulfur hexafluoride
sulfur hexafluoride
\uparrow
use prafixes
in molaules
(non-metals)
11. Sunbowlium has two naturally occurring isotopes. ${ }^{278} \mathrm{Su}$ has a mass of $278.012 \mathrm{~g} / \mathrm{mol}$ and is 73.44% abundant. ${ }^{280} \mathrm{Su}$ has a mass of $280.014 \mathrm{~g} / \mathrm{mol}$ and is 26.56% abundant. What is the average atomic mass of Sunbowlium?
(B) $279.01 \mathrm{~g} / \mathrm{mol}$
(C) $279.48 \mathrm{~g} / \mathrm{mol}$
$\left(278.012^{9} / \mathrm{mol}\right)(0.7344)+\left(280.014^{9 / \mathrm{mol}}\right)(0.2656)=$ $278.54 \mathrm{~m} / \mathrm{mol}$
(D) $558.03 \mathrm{~g} / \mathrm{mol}$
(E) $6.022 \times 10^{23} \mathrm{~g} / \mathrm{mol}$
12. When the reaction $\mathrm{C}_{9} \mathrm{H}_{20}(\mathrm{l})+14 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underbrace{9 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})}$ is correctly balanced, $18+10=28$ oxygen atoms
(A) $9 \mathrm{O}_{2}$ molecules are consumed
(B) $11 \mathrm{O}_{2}$ molecules are consumed
(C) $14 \mathrm{O}_{2}$ molecules are consumed
(D) $17 \mathrm{O}_{2}$ molecules are consumed
(E) $19 \mathrm{O}_{2}$ molecules are consumed
13. A student obtains 342.67 grams of octane, $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})$. How many octane molecules are present?
(A) 7.226×10^{24} octane molecules

$$
(8 * 12.01)+(18 * 1.01)=114.3 \mathrm{~g} / \mathrm{mol}
$$

(B) 2.408×10^{24} octane molecules
(C) $\quad 3.601 \times 10^{24}$ octane molecules $\quad 342.67 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}\left(\frac{1 \mathrm{~mol}}{114.3 \mathrm{~g}}\right)\left(\frac{6.022 \times 10^{23} \mathrm{C}_{8} \mathrm{H}_{18} \text { molecules }}{1 \mathrm{~mol}}\right)=$
(E) 1.204×10^{24} octane molecules

$$
1.807 \times 10^{24} \mathrm{C}_{8} \mathrm{H}_{18} \text { molecules }
$$

14. A student places 275.8 grams of $\mathrm{LiNO}_{3}(\mathrm{~s})$ into a $5.000-\mathrm{L}$ volumetric flask and then fills to the mark with water. What is the concentration of the solution?
(A) 55.16 M
(B) $\quad 0.2000 \mathrm{M}$
(C) 0.8000 M
$275.8 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{68.959}\right)=4.000 \mathrm{~mol}$
(D) 0.01813 M
$M=\frac{\mathrm{mol}}{L}=\frac{4.000 \mathrm{~mol}}{5.000 \mathrm{~L}}=0.8000 \mathrm{M}$

Unit 2 (Material Assessed on Exam 2)

15. 3.00 L of $0.725 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ is diluted to 8.00 L . What is the molarity of the resulting solution?
(A) 0.272 M
$M_{1} V_{1}=M_{2} V_{2}$
(B) 3.68 M
(C) $\quad 1.93 \mathrm{M}$
$(3.00 \mathrm{~L})(0.725 \mathrm{~m})=\left(\mathrm{m}_{2}\right)(8.00 \mathrm{~L})$
(D) $\quad 0.800 \mathrm{M}$
$M_{2}=0.272 \mathrm{M}$
(E) $\quad 1.25 \mathrm{M}$
16. A student obtains two acid solutions. One is 1.00 L of 0.100 M HCl (aq).

The other is 1.00 L of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ (aq).
Which solution contains the most H^{+}ions?
(A)
 (MCI is a string acid)
(B) 1.00 L of $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ (aq)

-Coom is a weak acid a little
17. A student obtains a 15.00 mL sample of $\mathrm{HCl}(\mathrm{aq})$. She titrates it with $0.1023 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ and finds 41.65 mL are required to reach the equivalence point. The concentration of $\mathrm{HCl}(\mathrm{aq})$ is:
(A) 63.91 M
(B) 27.14 M
$M_{\text {acid }} V_{\text {acid }}=M_{\text {Base }} V_{\text {Base }}$
(C) 0.03684 M
$(M$ cid $(15.00 \mathrm{~mL})=(0.1023 \mathrm{M})(41.65 \mathrm{~mL})$
(D) 3.521 M

Macid $=0.2841 \mathrm{~m}$
18. In an excess amount of oxygen, how many grams of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are theoretically produced from the combustion of 322.5 g of ethanol $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{l})\right.$, molar mass of $\left.46.07 \mathrm{~g} / \mathrm{mol}\right]$?

19 A student calculates that 167.5 grams of lithium chloride should theoretically be produced during a process. She actually recovers 138.7 grams of lithium chloride. What is the percent yield for this process?
(A) $120.8 \% \quad \%$ yield $=\frac{\text { actual }}{\text { theoretical }} \cdot 100 \%=\frac{138.79}{167.59} \cdot 100 \%=82.81 \%$
(C) 17.19%
(D) 28.80%
(E) 12.08%
20. A student obtains a $5.00-\mathrm{L}$ BBQ gas cylinder that contains 1.14 moles of propane gas, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$, at 303 K . The pressure inside the cylinder is:
(A)
(B) 5.67 atm

$$
\begin{aligned}
& P V=n R T \\
& P=\frac{n R T}{V}=\frac{(1.14 \mathrm{~mol})\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{molK}}\right)(303 \mathrm{~K})}{5.00 \mathrm{~L}}
\end{aligned}
$$

(D) 4.98 atm
(E) 0.201 atm
21. A student places 3.36 g of a gas into a $10.0-\mathrm{L}$ container at 298 K and measures the pressure to be 2.053 atm . This gas is:
(A) $\quad \mathrm{O}_{2}(\mathrm{~g})$
(B) $\quad \mathrm{N}_{2}(\mathrm{~g})$

$$
n=\frac{P V}{R T}=\frac{(2.053 \mathrm{~atm})(10.0 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{mol.k}}\right)(298 \mathrm{~K})}=0.8391 \mathrm{~mol}
$$

(C) $\quad \mathrm{Cl}_{2}(\mathrm{~g})$
(D) $\mathrm{H}_{2}(\mathrm{~g})$
(E) $\mathrm{He}(\mathrm{g})$

$$
\text { Molar mass }=9 / \mathrm{mol}=\frac{3.36 \mathrm{~g}}{0.8391 \mathrm{~mol}}=4.009 / \mathrm{mol}=\mathrm{He}
$$

22. A student obtains a Thermos ${ }^{\circledR}$ bottle at $22.3^{\circ} \mathrm{C}$ and 1.031 atm . The student closes the bottle containing air [$78 \% \mathrm{~N}_{2}(\mathrm{~g}) ; 21 \% \mathrm{O}_{2}(\mathrm{~g}) ; 1 \%$ other gases]. The student places the bottle in the refrigerator so the air inside the bottle cools to $6.2^{\circ} \mathrm{C}$. Which of the following is true?

(A) The gases inside the bottle are traveling faster at the lower temperature than at the higher temperature; the pressure inside the bottle at the lower temperature is lower than at the higher temperature; the number of moles of gas present inside the bottle at the lower temperature is the same as at the higher temperature.
(B) The gases inside the bottle are traveling slower at the lower temperature than at the higher temperature; the pressure inside the bottle at the lower temperature is the same as at the higher temperature; the number of moles of gas present inside the bottle at the lower temperature is the same as at the higher temperature.
(C) The gases inside the bottle are traveling the same velocity at the lower temperature as the higher temperature; the pressure inside the bottle at the lower temperature is lower than at the higher temperature; the number of moles of gas present inside the bottle at the lower temperature is the same as at the higher temperature.
(D)

The gases inside the bottle are traveling slower at the lower temperature than at the higher temperature; the pressure inside the bottle at the lower temperature is lower than at the higher temperature; the number of moles of gas present inside the bottle at the lower temperature is the same as at the higher temperature.
(E) The gases inside the bottle are traveling slower at the lower temperature than at the higher temperature; the pressure inside the bottle at the lower temperature is higher than at the higher temperature; the number of moles of gas present inside the bottle at the lower temperature is the same as at the higher temperature.
23. A student places 4.00 moles of $\mathrm{Xe}(\mathrm{g})$ and 12.00 moles of $\mathrm{Ne}(\mathrm{g})$ into a flask at 298 K and measures the pressure to be 5.00 atm . The pressure due to $\mathrm{Xe}(\mathrm{g})$ is:
(A) 1.25 atm
(B) 1.67 atm
(C) 0.800 atm
(D) 0.333 atm
(E) 2.00 atm

24. Consider the following five gases: $\mathrm{F}_{2}(\mathrm{~g}) \quad \mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{He}(\mathrm{g}) \quad \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{Ne}(\mathrm{g})$

Of these, the gas with the lowest velocity at poom temperature is:
(A) $\quad \mathrm{F}_{2}(\mathrm{~g})$
(B) $\mathrm{I}_{2}(\mathrm{~g})$
(C) $\mathrm{He}(\mathrm{g})$
(D) $\mathrm{H}_{2}(\mathrm{~g})$
(E) $\mathrm{Ne}(\mathrm{g})$.
25. Which of the following processes is exothermic?
(A) $2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Combustion
(B) $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l)
(C) $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (g)
(D) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$
(E) $\quad \mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
26. How much heat is required to raise the temperature of 5500 grams of water from $80.0^{\circ} \mathrm{C}$ to $95.0^{\circ} \mathrm{C}$?
(A) 82500 kJ
(B) 344 kJ
(C) 82.5 kJ
(D) 440 kJ
(E) 150 kJ
27. A system gives off 2350 kJ of heat and does 1500 kJ of work. The change in the internal energy of the system is:
(A) +3850 kJ
(B) -3850 kJ
(C) -850 kJ
(D) +850 kJ

(E) $+3.525 \times 10^{7} \mathrm{~kJ}$
28. Consider the reaction profile:

The activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ for the process is:
(A) $100 \mathrm{~kJ} / \mathrm{mol}$
(B) $300 \mathrm{~kJ} / \mathrm{mol}$
(C) $400 \mathrm{~kJ} / \mathrm{mol}$
(D) $500 \mathrm{~kJ} / \mathrm{mol}$
(E) $\quad 600 \mathrm{~kJ} / \mathrm{mol}$
29. Consider:

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})+12 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+11 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\text {reaction }}^{\circ}=-5644 \mathrm{~kJ}
$$

How much energy is released when 6 moles of sucrose, table sugar, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})$ is combusted?

Unit 3 (Material Discussed after Exam 2)

30. The frequency of violet laser photons having a wavelength of 410 nm is:
(A) $1.37 \times 10^{-9} \frac{1}{s}$

$$
v=\frac{C}{\lambda}=\frac{3.00 \times 10^{8} \frac{\mathrm{~m}}{3}}{410 \times 10^{-9} \mathrm{~m}}=7.32 \times 10^{14} \frac{1}{3}
$$

(B) $1.37 \times 10^{14} \frac{1}{s}$
(C) $\quad \begin{array}{r}\frac{S}{3} \\ \hline 10^{14} \frac{1}{s} \\ \hline\end{array}$
(D) $7.68 \times 10^{14} \frac{1}{s}$
(E) $8.91 \times 10^{14} \frac{1}{s}$
31. The energy of one mole of yellow photons having a wavelength of 580 nm is:
$\begin{array}{ll}\text { (A) } 0.580 \mathrm{~kJ} \\ \text { (B) } 3.49 \times 10^{26} \mathrm{~kJ} & \nu=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}{530 \times 10^{-9} \mathrm{~m}}=5.17 \times 10^{14 \frac{1}{\mathrm{~s}}} \mathbf{} \text { (C) }\end{array}$
(C) 302 kJ
$E=h \nu=\left(6.626 \times 10^{-34} \frac{J .3}{\text { photon }}\right)\left(5.17 \times 10^{14} \frac{1}{8}\right)=$
$3.43 \times 10^{-19} \mathrm{~J} /$ photon
\downarrow
energy for one mole
$E=3.43 \times 10^{-19} \% /$ photon $\cdot \frac{6.022 \times 10^{23} \text { photons }}{1 \mathrm{mal}}=206,388 \mathrm{~J} / \mathrm{mol}$
32. Consider the Bohr Model for the Hydrogen Atom. Which of the following electron transitions releases the least energy?
(A) $n=7$ to $n=6$ smallest t
(B) $\mathrm{n}=6$ to $\mathrm{n}=5$
(C) $\mathrm{n}=5$ to $\mathrm{n}=4$
(D) $\mathrm{n}=4$ to $\mathrm{n}=3$
(E) $\mathrm{n}=3$ to $\mathrm{n}=2$

33. Consider the Bohr Model for the Hydrogen Atom. Which of the following electron transitions releases electromagnetic radiation with the longest wavelength?
(A) $n=7$ to $n=6$
\downarrow
Smallest energy $=$ longest wavelength
(C) $\mathrm{n}=5$ to $\mathrm{n}=4$
(D) $\mathrm{n}=4$ to $\mathrm{n}=3$
(E) $\mathrm{n}=3$ to $\mathrm{n}=2$
34. Which of the following sets of quantum numbers is not valid?
(A) $\mathrm{n}=1, \mathrm{l}=0, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$.
(B) $n=3,1=2, m_{1}=-1, m_{s}=+1 / 2$.
(C) $n=1,1=1, m_{1}=-1, m_{s}=-1 / 2$. when $n=1 \quad \ell=0$
(D) $\mathrm{n}=2, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=+1 / 2$.
(E) $\mathrm{n}=5, \mathrm{l}=1, \mathrm{~m}_{\mathrm{l}}=1, \mathrm{~m}_{\mathrm{s}}=+1 / 2$.
35. Consider the set of quantum numbers $n_{\sqrt{ }}=4,1=1, m_{l}=-1$, and $m_{s}=-1 / 2$. What orbital does this set correspond to?
(A) a As orbital
(B) a 4 p orbital
(C) a td orbital
(D) a 1 s orbital
(E) $n=4,1=1, m_{1}=-1$, and $m_{s}=-1 / 2$ is not a valid set of quantum numbers.
36. X-rays are greater in energy than visible light. Which of the following statements is false?
(A) The frequency of x-rays is lower than the frequency of visible light. $E=h\rangle$
(B) The wavelength of x eraysits smatter than the wavelengthervisible light.
(C) Both x-rays and visible light are forms of electromagnetic radiation.
(D) One mole of x-ray photons has greater energy than one mole of visible photons.
(E) Blue and red light travel at the same speed in a vacuum.

37. Solutions to the wave equation for the hydrogen atom solved by Schrodinger led to the new concepts) of the quantization of:
(A) Enthalpy
(B) Energy and space for the electron
(C) Molarity
(D) Isomers
(E) Gases
38. The ground-state electron configuration of a nitrogen atom is:

39. The ground-state electron configuration of a fluoride ion (F^{-}) is:
(A) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{2}$
(B) $\quad 1 s^{2} 2 s^{2} 3 s^{1}$
(C) $\frac{1 s^{2} 2 s^{2} 2 p^{6}}{1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}}$
(E) $1 s^{2} 2 s^{2} 2 p^{4}$
40. Because of CH 121...
(A) My pick-up lines now include the words titrate, heat, enthalpy, dragonflies, and orbitals.
(B) I have become a social butterfly.
(C) I have brushed off several clumsy passes by the Nobel Prize Committee.
(D) I have laughed more times in the past ten weeks than I have in the previous ten years.
(E) I have switched to a dandruff shampoo.

Questions 1 through 40 each have 4 points attached. Any response to Question 40 will receive full credit (4 Points); even no response.

The point total for this exam is 160 points. See the grade sheet or CH 121 web syllabus for grade computation details.

Final exam keys, scores, and course grades will be posted on the CH 1211 website as they become available.

Have an excellent and safe Winter Break

