Chemistry 121
Exam 1

Fall 2006
October 19, 2006

Oregon State University
Dr. Richard Nafshun

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form and note card in the appropriate stacks. You may keep the exam packet, so please show your work and mark the answers you selected on it.

1 inch $=2.54 \mathrm{~cm}$ (exact)	$10 \mathrm{dm}=1 \mathrm{~m}$	$100 \mathrm{~cm}=1 \mathrm{~m}$
$1000 \mathrm{~mm}=1 \mathrm{~m}$	$1000 \mathrm{~m}=1 \mathrm{~km}$	$1000 \mathrm{~mL}=1 \mathrm{~L}$
1 mole $=6.022 \times 10^{23}$		

1. A student measures the time of a reaction to be 0.70230 seconds.
(A) There are two significant figures in this measured quantity.
(B) There are three significant figures in this measured quantity.
(C) There are four significant figures in this measured quantity.
(D) There are five significant ffguresinthis measured quantity.
(E) There are six significant figures in this measured quantity.
2. A student combines 4.304 g of sodium sulfate and 120.20 g of potassium carbonate. The mass of the mixture (with the proper number of significant figures) is:
(A) 124.5040 g
(B) $\quad 124.504 \mathrm{~g}$

3. Which of the following statements is FALSE?
(A) Electrons-are-located-outside-of the nucleus. True
(B) About 99.9% of the atom consists of the nucleus.
(C) Electrons carry a negative charge; protons carry a positive charge. Ttue
(D) A neutral atom has an equal number of protons and electrons. Trud
(E) An electron roughly $1 / 2000^{\text {th }}$ the mass of a proton. True
4. Which of these pairs of elements would be most likely to form an ionic compound?
(A) P and Br
(B) Cr and K
(C) C and O
(D) O and Mg

(E) Al and Rb
5. Which of these pairs of elements would be most likely to form a molecule?
(A) O and N
\downarrow
(B) Al and Si Non-metals
(C) Ca and Li
(D) Al and B
(E) Xe and K
6. Consider $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$. Each unit contains:

(A) One nitrogen ion, four hydrogen ions, one phosphorous ion, and four oxide ions
(B) Twelve ammonium ions, one phosphorous ion, and four oxide ions
(C) Three sodium ions, one phosphorus ion, and four oxide ions
(D) Three ammonium ions and one phosphate ion
(E) Three ammonium ions and four phosphate ions
7. Which of the following chemical formulae is incorrect?
(A) $\quad \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B)
(C)
SrO
(D) $\mathrm{Li}_{2} \mathrm{O}$
(E) $\quad \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

8. ${ }^{208} \mathrm{Bi}^{2+}$ has:

(A) 83 protons, 83 neutrons, 85 electrons	Element $83 \Rightarrow 83 p$
(B) 83 protons, 125 neutrons, 81 electrons	$208 p+n \Rightarrow 125 \mathrm{n}$
(C)	125 protons, 83 neutrons, 81 electrons
(D) 125 protons, 83 neutrons, 85 electrons	$e^{-}=83-2=81 e^{-}$
(E) 83 protons, 125 neutrons, 85 electrons	

9. A student measures the volume of a Potassium Trioxalatoferrate (III) crystal to be 0.0282 inches ${ }^{3}$. Expressed in m^{3}, this volume is:
$\begin{aligned} & \text { (A) } 7.16 \times 10^{-4} \mathrm{~m}^{3} \\ & \text { (B) } 7.26 \times 10^{4} \mathrm{~m}^{3} \\ & \text { (C) } 1.72 \times 10^{-9} \mathrm{~m}^{3}\end{aligned} \quad 0.0282 \mathrm{in}^{3}\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3}\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{3}=4.62 \times 10^{-7} \mathrm{~m}^{3}$
(C) $1.72 \times 10^{-9} \mathrm{~m}^{3}$
(D) $7.16 \times 10^{-5} \mathrm{~m}^{3}$
(E) $4.62 \times 10^{-7} \mathrm{~m}^{3}$
10. Consider the production of $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ from the elements: $3 \mathrm{Ca}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow \mathrm{Ca}_{3} \mathrm{~N}_{2}(\mathrm{~s})$ Which of the following statements is true?
(A) Calcium metal gained one electron
(B) Calcium metal gained two electrons
(C) Calcium metal gained three electrons
(D) Calcium metal lost one electron
(E) Calcium metal lost two electrons
11. Two elements that will form 2-ions in ionic compounds are:
(A) N and P
(B) O and S
(C) lose $2 e^{-}$
(D) Cl and Br
(E) Ca and K

12. The mass percent compositions of the elements in lithium acetate, $\mathrm{LiCH}_{3} \mathrm{COO}$ are:

(A)	$\mathrm{Li}=12.50 \%$	$\mathrm{C}=25.00 \%$	$\mathrm{H}=37.50 \%$	$\mathrm{O}=25.00 \%$
(B)	$\mathrm{Li}=10.52 \%$	$\mathrm{C}=36.40 \%$	$\mathrm{H}=4.59 \%$	$\mathrm{O}=48.49 \%$
(C)	$\mathrm{Li}=6.94 \%$	$\mathrm{C}=24.02 \%$	$\mathrm{H}=3.03 \%$	$\mathrm{O}=32.00 \%$
(D)	$\mathrm{Li}=6.94 \%$	$\mathrm{C}=12.01 \%$	$\mathrm{H}=1.01 \%$	$\mathrm{O}=16.00 \%$
(E)	$\mathrm{Li}=19.30 \%$	$\mathrm{C}=33.40 \%$	$\mathrm{H}=2.81 \%$	$\mathrm{O}=44.49 \%$

$$
\begin{aligned}
& \text { Li } \underbrace{\begin{array}{c}
C \quad \\
H \quad H \\
\underbrace{}
\end{array} \underbrace{O} \quad 0} \\
& 6.941^{9 / \mathrm{mal}} \quad 2 * 12.01^{9 / \mathrm{mol}} \quad 3 * 1.01 \% / \mathrm{mol} \quad 2 * 16.00^{9 / \mathrm{mal}} \\
& \text { Molar Mass }=65.999 / \mathrm{mol} \\
& \% \text { Li }=\frac{6.941 \% / \mathrm{mul}}{65.99 \% / \mathrm{mal}}(100 \%)=10.52 \% \\
& \% C=\frac{2 \times 12.01^{9} \mathrm{~mol}}{65.99 \mathrm{mal}}(100 \%)=36.40 \% \\
& \% / 0 H=\frac{3+1.01 \% / \mathrm{mol}}{65.99 \% / \mathrm{mol}}(10070)=4.59 \% \\
& \% \quad 0=\frac{2+16.009 / \mathrm{mol}}{65.99 \% \mathrm{mel}}(10070)=48.49 \%
\end{aligned}
$$

13. Which of the following pairs are isotopes?
(A) ${ }^{12} \mathrm{C}$ and ${ }^{12} \mathrm{C}$.
(B) ${ }^{14} \mathrm{C}$ and ${ }^{14} \mathrm{~N}$. Same number of p
(C) ${ }^{12} \mathrm{Cand}{ }^{14} \mathrm{~N}$
(D) ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ Different number of n
(E) ${ }^{14} \mathrm{C}$ and ${ }^{28} \mathrm{Si}$.
14. Which of the following compounds contains an element with the incorrect number of bonds?

(A)
(B)

(C)

(D)
(E)
15. The chemical formula of strontium phosphate is:
(A) $\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B) $\mathrm{Sr}_{2}\left(\mathrm{PO}_{4}\right)_{3}$
(C) $\quad \mathrm{SrPO}_{8}$
(D) $\quad \mathrm{Sr}_{3} \mathrm{P}_{2}$
(E) $\quad \mathrm{Sr}_{2} \mathrm{P}_{3}$
16. The name of PCl_{5} is?
(A) Phosphorous chloride
(B) Phosphorous carbonate
(C) Potassium chloride
(D) Phosphorous pentachloride
(E) Monopotassium pentachloride

$$
\begin{aligned}
& \mathrm{PCl}_{5} \\
& \text { phosphorous pentachloride }
\end{aligned}
$$,

17. Cerium has two naturally occurring isotopes. ${ }^{151} \mathrm{Bm}$ has a mass of $150.92 \mathrm{~g} / \mathrm{mol}$ and is 18.82% abundant. ${ }^{153} \mathrm{Bm}$ has a mass of $152.97 \mathrm{~g} / \mathrm{mol}$ and is 81.18% abundant. What is the average atomic mass of Beerium?
(A) $\quad 151.31 \mathrm{~g} / \mathrm{mol} \quad(150.92 \% \mathrm{mal} \cdot 0.1882)+\left(152.97^{\%} / \mathrm{mol} \cdot 0.8118\right)=152.58^{\circ} / \mathrm{m}$
(B) $152.97 \mathrm{~g} / \mathrm{mol}$
(C) $150.92 \mathrm{~g} / \mathrm{mol}$
(D) $151.95 \mathrm{~g} / \mathrm{mol}$
(E) $152.58 \mathrm{~g} / \mathrm{mol}$
18. The mass of a single potassium atom is:
(A) 6.022×10^{23} grams
$39.10^{9} / \mathrm{mal}\left(\frac{1 \mathrm{mal}}{6.022 \times 10^{33} \text { atoms }}\right)=6.49 \times 10^{-23} \frac{9}{\text { aton }}$
(B) 1.54×10^{-22} grams
(C) 1.54×10^{22} grams
(D) 6.49×10^{-23} grams
(E) 39.10 grams
19. How many grams of LiCl are required to make 250.0 mL of 0.1500 M LiCl (aq)?
(A) 3.750 grams
\downarrow
(B) 37.50 grams
(C) 1.590 grams
(D) 0.6291 grams
$M=\frac{\mathrm{mol}}{L}$
(E) 2.090 grams

$$
\begin{aligned}
& 0.1500 \frac{\mathrm{~mol}}{2}=\frac{(\mathrm{mol})}{0.2500 \mathrm{~L}} \\
& \mathrm{~mol}=0.03750 \mathrm{~mol} \\
& 0.03750 \mathrm{~mol}\left(\frac{42.39 \mathrm{~g}}{1 \mathrm{~mol}}\right)=1.590 \mathrm{~g}
\end{aligned}
$$

20. Which of the following is a non-metal?
(A) Oxygen.
(B) Francium.
(C) Aluminum.

(D) Lithium.
(E) Magnesium.
21. When the reaction $\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is correctly balanced,
(A) $5 \mathrm{H}_{2} \mathrm{O}$ are produced
(B) $8 \mathrm{H}_{2} \mathrm{O}$ are produced
(C) $6 \mathrm{H}_{2} \mathrm{O}$ are produced
(D) $2 \mathrm{H}_{2} \mathrm{O}$ are produced
(E) $10 \mathrm{H}_{2} \mathrm{O}$ are produced
22. A student obtains 360.0 grams of NaCl . How many moles of NaCl are present?

23. A student obtains 36.04 grams of water, $\mathrm{H}_{2} \mathrm{O}$. How many water molecules
(A) 7.22×10^{24} (B)
个 $18.02 \% / \mathrm{mal}$
(B) 2.40×10^{24} o
(C) $3.60 \times 10^{24} \mathrm{o}$.
(D) 6.68×10^{23} one.
(E) 1.20×10^{24} duyenations:
$36.04 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{18.02 \mathrm{~g}}\right)=2.000 \mathrm{~mol} \mathrm{H} \mathrm{H} \mathrm{O}$
$2.000 \mathrm{mal} \mathrm{H}_{2} \mathrm{O}\left(\frac{6.022 \times 10^{23} \mathrm{H}_{2} \mathrm{O} \text { molecules }}{1 \mathrm{~mol} \mathrm{H} \mathrm{H}}\right)^{20}=1.204 \times 10^{24} \mathrm{H}_{2}$ O molecules
24. A student obtains 60.16 grams of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$. How many hydrogen atoms are present?
(A) $7.226 \times 10^{24} \mathrm{H}$ atoms. $30.08 \frac{\mathrm{~m} / \mathrm{mol}}{}$
(B) $2.40 \times 10^{2,}$
(C) 3.60×10^{24} atoms.
(D) 6.68×10^{23} atoms.
(E) 1.20×10^{24} atoms.

$$
\begin{aligned}
& 60.16 \mathrm{~g}\left(\frac{1 \mathrm{~mol}}{30.08 \mathrm{~g}}\right)=2.000 \mathrm{molC}_{2} \mathrm{H}_{6} \\
& 2.000 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}\left(\frac{6.022 \times 10^{23} \mathrm{C}_{2} \mathrm{H}_{6} \text { molecules }}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{0}}\right)=1.204 \times 10^{24} \mathrm{C}_{2} \mathrm{H}_{8} \\
& 1.204 \times 10^{24} \mathrm{C}_{2} \mathrm{H}_{6} \text { malecoles }\left(\frac{6 \mathrm{H} \text { tams }}{1 \mathrm{C}_{2} \mathrm{H}_{6} \text { mslecuies }}\right)=7.226 \times 0 \mathrm{H} \text { atoms }
\end{aligned}
$$

25. Because of Chemistry 121 ...
(A) I get invited to way more parties. I'm headed to one right now
(B) I live with constant abdominal discomfort.
(C) I discovered Skill Builder and wish it was available for all my courses.
(D) I have attained a level of confidence that will allow me to succeed in all I attempt.
(E) I am changing my major to chemistry... 8 am tomorrow morning!
[Any response will receive full credit; even no response.]
