Chemistry 121
Fall 2005
Exam 2

Oregon State University Dr. Richard Nafshun

Test Form 1

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form and note card in the appropriate stacks. You may keep the exam packet, so please show your work and mark the answers you selected on it.

Abbreviated Solubility Rules:
Rule 1:All nitrates, group 1A metal salts and ammonium salts are soluble.
Rule 2:All carbonates, hydroxides, phosphates and sulfides are insoluble.
Rule 3:Rule 1 always takes precedent.

$\mathrm{R}=0.0821 \frac{\mathrm{~L} \bullet \mathrm{~atm}}{\mathrm{~mol} \bullet K}$	$\mathrm{R}=8.314 \frac{\mathrm{~kg} \bullet \mathrm{~m}^{2}}{\mathrm{~s}^{2} \bullet \mathrm{~mol} \bullet \mathrm{~K}}$	$\mu_{r m s}=\sqrt{\frac{3 R T}{\text { Molar Mass }}}$
$\mathrm{PV}=\mathrm{nRT}$	$760 \mathrm{Torr}=1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$	$\mathrm{K}=273.15+{ }^{\circ} \mathrm{C}$
1 mole $=6.02 \times 10^{23}$	$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$	milli $(\mathrm{m})=1 / 1000$

Substance	$\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}$
Water	4.184
Methyl Alcohol	2.549
Ice	2.093
Steam	2.009
Benzene	1.750
Wood (typical)	1.674

Substance	$\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}$
Soil (typical)	1.046
Air	1.046
Aluminum	0.901
Mercury	0.138
Gold	0.130
Lead	0.128

Amire	Chage min	Eomula
Hydroxide	1－	OH－
Cyanide	1－	CN
Nitrate	1－	$\mathrm{NO}_{3}{ }^{\text {a }}$
Acetate	$1-$	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
Carbonate	2－	$\mathrm{CO}_{3}{ }^{\text {2－}}$
Phosphate	3－	$\mathrm{PO}_{4}{ }^{\text {3 }}$
Hydronium	$1+$	$\mathrm{H}_{3} \mathrm{O}^{+}$
Ammonium	1＋	$\mathrm{NH}_{4}{ }^{+}$
Sulfate	2－	$\mathrm{SO}_{4}{ }^{2-}$

	Group IA																\cdots	VIIIA
1	$\begin{gathered} 1 \\ \mathrm{H} \\ \substack{\text { Hydrogen } \\ 1.0079} \end{gathered}$	114											IIIA	IVA	VA	YLa	VIIA	2 He Kielum 4.0026
2	$\stackrel{3}{\mathrm{Li}}^{2}$ Lithium 6.941	$\cdot 4$ Be Bergllium 9.01218											$\begin{gathered} 5 \\ \text { B } \\ \text { Boron } \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ \text { Carton } \\ 12.011 . \end{gathered}$	7 N Nirrogen 14.0067	$\begin{array}{\|c} \hline 1 \begin{array}{c} 8 \\ \mathrm{O} \\ \text { 0xygen } \\ 15.9994 \end{array} \end{array}$	$\stackrel{9}{\mathrm{~F}}$ Fluodne 18.9984.	$\begin{gathered} 10 \\ \mathrm{Ne} \\ \mathrm{Neon} \\ 20.179 \end{gathered}$
3	$\begin{gathered} \hline 11 \\ \mathrm{Na} \\ \text { sodium } \\ \text { 22.98977 } \\ \hline \end{gathered}$		IIIB	IVB	V8．	VIB	VIIB		$\underbrace{\text { VII }}$		1B	118	13 Al Aluminum 26.9815	$\begin{gathered} 14 \\ \text { Si } \\ \text { Silicon } \\ 28.0855 \end{gathered}$	$\begin{gathered} 15 \\ \cdots \stackrel{\mathbf{P}}{ } \\ \text { Phosphbinus } \\ 30.97376 \\ \hline \end{gathered}$	$\begin{array}{r} 16 \\ \mathbf{S} \\ \text { Sulfur } \\ 32.06 \\ \hline \end{array}$	17 Cl Chlorine 35.453	$\begin{gathered} 18 \\ \text { Ar } \\ \text { Argon } \\ 39.948 \end{gathered}$
4	$\begin{gathered} \stackrel{19}{\mathbf{K}} \\ \substack{\text { Ponassium } \\ 39.0983} \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \text { Calcium } \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc. } \\ \text { Scandium } \\ 44.9559 \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \mathrm{Ti} \text { ianium } \\ 47.88 \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{~V}: \\ \text { Vamadium } \\ 50.9415 \end{gathered}$	$\int_{\substack{24 \\ \mathrm{Cr} \\ \text { Crominm } \\ 51.96}}$	25 Mn Mnngunese 54.9380$\|$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ \text { Iron } \\ 55.847 \end{gathered}$	27 Co Cobalt 58.9332	28 Ni Nicke！ ． 58.70	29 Cu Copper 63.546	$\begin{aligned} & 30 \\ & \stackrel{30}{\mathrm{Z}} \mathrm{n} \\ & \text { zine } \\ & 6.38 \end{aligned}$	31 Ga Gallium 69.72	$\begin{gathered} 32 \\ \mathrm{Ge} \\ \text { Germanium } \\ 72.59 \end{gathered}$	33 As Arsenic 74.9216	34 Se Selenium 78.96	$\begin{gathered} 35 \\ \mathrm{Br} \\ \text { Bromire } \\ 79.994 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ \text { Krypton } \\ 83.80 \end{gathered}$
5	37 $\mathbf{R b}$ Rubidium 85．4678	$\begin{gathered} \hline 38 \\ \mathrm{Sr} \\ \text { Strontium } \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathrm{Y} \\ \text { Yatrium } \\ 88.9059 \end{gathered}$		$\begin{gathered} 41 \\ \mathrm{Nb} \\ \text { Niobiluro } \\ 92.9064 \end{gathered}$	42 Mo Molybdenuri 95.94	43 Tc Technectum 98.906	44 Ru Ruthenium 101.07	$\begin{gathered} 45 \\ \mathrm{Rh} \\ \text { Rhodium } \\ \text { 102.905s } \end{gathered}$	$\begin{gathered} .46 \\ \text { Pd } \\ \text { Palladium } \\ \text { I06.4 } \end{gathered}$	47 Ag Sifer 107.868	$\begin{gathered} 48 \\ \mathrm{Cd} \\ \text { Cadmium } \\ 11241 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ \text { Indium } \\ 14.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ \operatorname{cin} \\ 118.69 \end{gathered}$	51 Sb Antimony 121.75	$\begin{gathered} 52 \\ \mathrm{Te} \\ \begin{array}{c} \text { Telurum } \\ 127.60 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ \text { Iodine } \\ \text { I26.9045 } \end{gathered}$	$\begin{gathered} 54 \\ \mathrm{Xe} \\ \text { Xenon } \\ 131.30 \end{gathered}$
6	$\begin{gathered} 55 \\ \mathrm{Cs} \\ \text { cesium } \\ 132.9054 \end{gathered}$	56 Ba Barium 137.33	${ }^{57-71}$	$\begin{gathered} 72 \\ \text { Hf } \\ \text { Hefnium } \\ 178.49 \\ \hline \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ \text { Tancalum } \\ 180.9479 \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ \text { Tungguen } \\ \text { 183.85 } \end{gathered}$	－ 75 Re Rhenium 185.207	$\begin{gathered} 76 \\ \text { Os } \\ \text { Osmium } \\ 190.2 \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { Ir } \begin{array}{c} \text { Lridum } \\ 192.22 \\ \hline \end{array} ⿳ 亠 口 子 \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ \text { Platinum } \\ 195.09 \\ \hline \end{gathered}$	$\begin{gathered} 79 \\ \mathrm{Au} \\ \text { Gold } \\ 196.9665 \end{gathered}$	$\begin{gathered} \hline 80 \\ \mathrm{Hg} \\ \text { Mercury } \\ 200.59 \\ \hline \end{gathered}$	81 ：Tl Thallium 204.37	82 Pb Lead 207.2	$\begin{gathered} 83 \\ \mathrm{Bi} \end{gathered}$ Bismuth 208.9804	$\begin{gathered} 84 \\ \mathrm{Po} \\ \text { Polonium } \\ (209) \\ \hline \end{gathered}$	85 At Astatine （210）	$\begin{gathered} { }_{86}^{86} \\ \mathbf{R n} \\ \text { Radon } \\ \text { (222) } \end{gathered}$
7	87 Fr Francium （223）	$\begin{gathered} 88 \\ \mathrm{Ra} \\ \text { Redium } \\ 226.0254 \end{gathered}$	89－103 ${ }^{\dagger}$ Actinides	104 Rf Ruberfartium （201）	105 Ha Hatnium （262）			108 Hs Hassium （255）	$\begin{gathered} 109 \\ \text { Mt } \\ \text { Meinerium } \\ \text { (226) } \end{gathered}$	$\begin{gathered} 110 \\ \ddagger \end{gathered}$ （269）	$\stackrel{111}{\ddagger}$			114	－	\rightarrow Stable	gion？	

1. How many grams of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are theoretically produced from 1026.9 g of sucrose and an excess amount of oxygen?
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~g}) \quad+\quad 12 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 12 \mathrm{CO}_{2}(\mathrm{~g}) \quad+\quad 11 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
1026.9
\downarrow (1)
3.800 Mol (2) 33.000 mol
(1) $1026.9 \mathrm{~g} \underset{4}{\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}\left(\frac{1 \mathrm{~mol}}{342.3 \mathrm{~g}}\right)=3.000 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ $(12 \times 12.01)+(22 \times 1.0079)+(11 \times 16.00)=342.3 \mathrm{~mol}$
(2) $3.000 \mathrm{~mol} \mathrm{C} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\left(\frac{11 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{On}^{\prime}}\right)=33.000 \mathrm{~mol} \mathrm{H} \mathrm{H}$
(3) $33.000 \mathrm{~mol} \mathrm{H} \mathrm{H} O\left(\frac{18.02 \mathrm{~g}}{1 \mathrm{~mol}}\right)=594.7 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
(A) $11.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are produced.
(B) $1484 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are produced.
(C) $648.7 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ (g) are produced.
(D) $594.7 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ (g) are produced.
(E) $198.2 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are produced.
2. Which of the following ionic compounds is insoluble in water?
(A) $\widehat{\mathrm{CaCO}_{3}}$
CO_{3}^{2-} (carbonates) ara insoluble.
CO_{3}^{2-} is Not combined
(B) LiF with an ion listed in Rule l.
(C) $\quad \mathrm{Na}_{3} \mathrm{PO}_{4}$
(D) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
(E) $\quad \mathrm{NaNO}_{3}$
3. Which of the following ionic compounds is soluble in water?
(A) $\quad \mathrm{MgCO}_{3}$
(B) $\quad \mathrm{AlPO}_{4}$
(C) $\quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(D) $\mathrm{Al}(\mathrm{OH})_{3}$
(E) LiOH - Rule 2: OH^{-}(hydroxide) are insoluble. However, this hydroxide is combined with a Group IA metal ion (soluble).
4. A student calculates that 220.4 grams of calcium carbonate should theoretically be produced during a process. She actually recovers 133.2 grams of calcium carbonate. What is the percent yield for this process?

$$
\text { Percent Yield }=\frac{\text { actual }}{\text { theoretical }} \cdot 100 \%=\frac{133.2 \mathrm{~g}}{220.4 \mathrm{~g}} \cdot 10070=60.44 \%
$$

(A) 1.655%.
(B) 165.5%.
(C). 87.2%.
(D) 39.56%.
(E) 60.44%.
5. A student dissolves three moles of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ into a beaker. How many magnesium ions are present in the solution?
(A) There are 6.02×10^{23} magnesium ions in the beaker.
(B) There are 1.20×10^{24} magnesium ions in the beaker.
(C) There are 1.81×10^{24} magnesium ions in the beaker.
(D) There are 3.61×10^{24} magnesium ions in the beaker.
(E) There are 219 magnesium ions in the beaker.

$$
3 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\left(\frac{6.02 \times 10^{23} \mathrm{Mg}_{\mathrm{g}}\left(\mathrm{NO}_{2}\right.}{1 \mathrm{Mol} \mathrm{Mg}\left(\mathrm{NO}_{2}\right)}\left(\frac{1 \mathrm{Mg}^{2+} \mathrm{ion}}{1 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}\right)=1.81 \times 10^{24} \mathrm{Mg}^{2+}\right. \text { ions }
$$

6. Consider the mixture of two aqueous solutions: one of sodium phosphate and one of calcium nitrate. The net ionic equation for the process that occurs is:
(A) $\quad \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$
(B) $\quad \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}$ (s)
(C) ${ }^{3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})}$
(E) $\quad 2 \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+6 \mathrm{NaNO}_{3}(\mathrm{aq})$

7. A student obtains a Thermos ${ }^{\circledR}$ bottle at $24.1^{\circ} \mathrm{C}$ and 0.989 atm . The student closes the bottle containing air [$78 \% \mathrm{~N}_{2}(\mathrm{~g}) ; 21 \% \mathrm{O}_{2}(\mathrm{~g}) ; 1 \%$ other gases]. The student places the bottle over a Bunsen burner so the bottle and the air heat up to $30.5^{\circ} \mathrm{C}$. Which of the following is true?
(A) The gases inside the bottle are traveling faster yes the higher temperature than at the lower temperature; the pressure inside the bottle is higher at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is higher at the higher temperature than at the lower temperature.
(B) The gases inside the bottle are traveling the same at the higher temperature than at the lower temperature; the pressure inside the bottle is higher at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is higher at the higher temperature than at the lower temperature.
(C) The gases inside the bottle are traveling the $<$ No
(C) The gases inside the bottle are traveling the same at the higher temperature than at the lower temperature; the pressure inside the bottle is the same at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is the same at the higher temperature than at the lower temperature.

yes

(D) The gases inside the bottle are traveling faster at the higher temperature than at the lower temperature; the pressure inside the bottle is higher at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is the same at the higher temperature than at the lower temperature.

```
All true
```

(E) The gases inside the bottle are traveling the same at the higher temperature than at the lower temperature; the pressure inside the bottle is lower at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is the same at the higher temperature than at the lower temperature.
8. A student obtains 15.00 mL of NaOH (aq) of unknown concentration. Upon titration, 28.33 mL of $0.1540 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ are required for neutralization. Determine the concentration of the $\mathrm{NaOH}(\mathrm{aq})$.
(A) $\quad 2.759 \mathrm{M}$

$$
M_{1} V_{1}=M_{2} V_{2}
$$

(B) 3.438 M
(C) $0.2909 \mathrm{M} \quad(15.00 \mathrm{~mL})=(0.1540 \mathrm{~m})(28.33 \mathrm{~mL})$
(D) 0.08154 M $M_{1}=0.2909 \mathrm{~m}$
(E) $\quad 65.44 \mathrm{M}$
9. A student dilutes 125.00 mL of 5.000 M NaOH to a new volume of 500.00 mL . The concentration of the new solution is:
(A) 0.0320 M
(B) 1.250 M
$M_{1} V_{1}=M_{2} V_{2}$
(C) 5.000 M
(D) $\quad 0.5000 \mathrm{M}$
(E) $\quad 3.125 \mathrm{M}$
before after
$\left(125.00 \mathrm{~mL}(5.000 \mathrm{M})=\left(M_{2}\right)(500.00 \mathrm{M})\right.$
$M_{2}=1.250 \mathrm{M}$
10. A student obtains a 1.75 liter balloon at $22.0^{\circ} \mathrm{C}$. He cools the balloon to $-35.0^{\circ} \mathrm{C}$. The volume of the balloon at $-35.0^{\circ} \mathrm{C}$ is:
(A) 2.78 L 238.15 K
(B) 1.41 D
(C) 2.17 L
(D) $\quad 0.461 \mathrm{~L}$
(E) $\quad 0.708 \mathrm{~L}$

$$
\frac{P_{1} V_{1}}{\not X_{1} T_{1}}=\frac{P_{2} V_{2}}{\nabla X_{2} T_{2}} \quad \frac{1.75 \mathrm{~L}}{295.15 \mathrm{~K}}=\frac{V_{2}}{238.15 \mathrm{~K}}
$$

$$
V_{2}=1.41 \mathrm{~L}
$$

11. A student places 9.36 g of a diatomic (a molecule having two atoms; such as O_{2}) gas into a $3.00-\mathrm{L}$ container at 310 K and measures the pressure to be 1.12 atm . This noble gas is:
$\begin{array}{ll}\text { (A) } & H_{2} \\ \text { (B) } & F_{2}\end{array} \quad n=\frac{P V}{R T}=\frac{(1.12 a+\operatorname{mn})(3.004)}{\left(0.0821 \frac{4 . a+h}{m o l-4}\right)(310 \%)}=0.1320 \mathrm{~mol}$
(C) Cl_{2}
(D) N_{2}

Molar Mass: $\frac{8}{\mathrm{~mol}}=\frac{9.36 \mathrm{~g}}{0.1320 \mathrm{~mol}}=70.91^{9 / \mathrm{mol}}$
12. A student places 761.427 grams of iodine gas $\left(\mathrm{I}_{2}\right)$ into a $200.0-\mathrm{L}$ flask at 305.0 K . The pressure inside the flask is:

(A) 0.3756 atm .
(B) 95.36 atm .
(C) 0.01049 atm .

(D) 2.662 atm .
(E) 1.000 atm .
13. A student places 4.00 moles of $\mathrm{Xe}(\mathrm{g})$ and 12.00 moles of $\mathrm{CO}_{2}(\mathrm{~g})$ into a flask at 298 K and measures the pressure to be 4.00 atm . The pressure due to $\mathrm{CO}_{2}(\mathrm{~g})$ is:
(A) $1 / 4 \mathrm{~atm}$.
(B) $3 / 4 \mathrm{~atm}$.
$P_{\mathrm{CO}_{2}}=\left(\frac{12 \mathrm{~mol}}{16 \mathrm{~mol}}\right)(4.00 \mathrm{~atm})=$
(C) 1.00 atm .
(D) 2.00 atm .
(E) 4.00 atm .
\uparrow
$\frac{3}{4}$
14. The root-mean-square speed of $\mathrm{Ar}(\mathrm{g})$ at 1.07 atm and 301.4 K is:
(A) $434 \mathrm{~m} / \mathrm{s}$.
(B) $741 \mathrm{~m} / \mathrm{s}$.

$$
\mu_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{molar}_{\text {Mass }}}}=\sqrt{\frac{(3)(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(301.4 \mathrm{~K})}{39.948 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~mol}}}}
$$

(C) $514 \mathrm{~m} / \mathrm{s}$.
$=434 \mathrm{~m} / \mathrm{s}$
(D) $7.296 \times 10^{-6} \mathrm{~m} / \mathrm{s}$.
(E) $1220 \mathrm{~m} / \mathrm{s}$.

$$
\text { units } \rightarrow 8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

15. Consider the following five gases: $\mathrm{F}_{2}(\mathrm{~g}) \quad \mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{He}(\mathrm{g}) \quad \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \quad \mathrm{N}_{2}(\mathrm{~g})$

Of these, the gas with the greatest velocity at room temperature is:
(A) $\quad \mathrm{F}_{2}(\mathrm{~g})$
\uparrow smallest mass
(B) $\quad \mathrm{I}_{2}(\mathrm{~g})$
(C) He $(\mathrm{g}) 4 \% \mathrm{~mol}$
(D) $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
(E) $\quad \mathrm{N}_{2}(\mathrm{~g})$.
16. The reaction below takes place in a classroom (a constant pressure of 1.00 atm and a constant temperature of 293 K for both reactants and products).

When 4.50 L of $\mathrm{C}_{7} \mathrm{H}_{16}(\mathrm{~g})$ react,
(A) 4.50 L of $\mathrm{H}_{2} \mathrm{O}$ are formed.
(B) 9.00 L of $\mathrm{H}_{2} \mathrm{O}$ are formed.
(C) 12.05 L of $\mathrm{H}_{2} \mathrm{O}$ are formed.
(D) 24.1 L of $\mathrm{H}_{2} \mathrm{O}$ are formed.
(E) 36.0 L of $\mathrm{H}_{2} \mathrm{O}$ are formed.
17. Shown below is the balanced equation for the combustion of butane. What is the volume (liters) of $\mathrm{CO}_{2}(\mathrm{~g})$ produced at 1.500 atm and 298.0 K from the combustion of 100.0 g of butane in excess $\mathrm{O}_{2}(\mathrm{~g})$?
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\quad 13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad 8 \mathrm{CO}_{2}(\mathrm{~g})+\quad 10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

(1) $100.0 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}\left(\frac{1 \mathrm{~mol}}{58.12 \mathrm{~g}}\right)=1.721 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}$ $(4 * 12.01)+(10 \times 1.0079)=58.123 / \mathrm{mo1}$
(2) $1.721 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}\left(\frac{8 \mathrm{~mol} \mathrm{CO}}{2}\left(2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}\right)=6.882 \mathrm{~mol} \mathrm{CO}_{2}\right.$
$\begin{array}{ll} & \text { (3) } \rho V=n R T \\ \text { (A) } & 125.5 \mathrm{~L} \\ 28.08 \mathrm{~L} & \frac{n R T}{P}=\frac{(6.882 \mathrm{~mol})\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \mathrm{\cdot k}}\right)(298.0 \mathrm{~K})}{1.500 \mathrm{~atm}}\end{array}$
(B)
(C) 112.3 L
(D) $\quad 224.0 \mathrm{~L}$
(E) 149.3 L
18. Which of the following processes is exothermic?
(A)

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \text {. Combustion }
$$

(B) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
(C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
(D) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$.
19. How much heat is required to raise the temperature of 150.0 grams of water from $20.6^{\circ} \mathrm{C}$ to $90.0^{\circ} \mathrm{C}$?
(A) 43.6 kJ
(B) 12.9 kJ
(C) 10.4 kJ
(D) 2.16 kJ
(E) $\quad 0.0794 \mathrm{~kJ}$
$q=M C O T=(150.0 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(90.0^{\circ} \mathrm{C}-20.6^{\circ} \mathrm{C}\right)$
$=43,555 \mathrm{~J}=43.6 \mathrm{~kJ}$
20. A system gives off 1345 kJ of heat and does 3305 kJ of work. The change in internal energy is:
(A) +4650 kJ .
(B) -4650 kJ .
(C) +1960 kJ .
(D) -1960 kJ .
(E) $\quad+4.445 \times 10^{6} \mathrm{~kJ}$.

$$
\begin{aligned}
E & =q+\omega \\
& =(-1345 \mathrm{~kJ})+(-3305 \mathrm{~kJ} \quad)=-4650 \mathrm{~kJ}
\end{aligned}
$$

21. Use the data in the table below to answer the following question:

$\Delta \mathrm{H}_{\mathrm{f}}$	$(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$	+49.0
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.9

What is $\Delta \mathrm{H}^{\circ}{ }_{\text {reaction }}$ for the following reaction?

$$
\Delta H^{\circ} \text { reaction }=\text { products }- \text { reactants }
$$

(A) $\quad+335 \mathrm{~kJ}$.
(B) -335 kJ .
(C) -3268 kJ
(D) -6535 kJ .
(E) -8368 kJ .
22. Determine $\Delta \mathrm{H}^{\circ}$ for this reaction:

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})
$$

using the following three equations:

$$
\begin{array}{ll}
\text { (1) } \mathrm{H}_{2}(\mathrm{~g})+(\mathrm{l} / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}_{1}^{\circ}=-285.8 \mathrm{~kJ} \quad \text { Flip and Multiply by } 2 \\
\text { (2) } \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{l}) & \Delta \mathrm{H}_{2}^{\circ}=-76.6 \mathrm{~kJ} \quad \text { Flip and Multiply by } 2 \\
\text { (3) } 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{HNO}_{3}(\mathrm{l}) & \Delta \mathrm{H}_{3}^{\circ}=-696.4 \mathrm{~kJ} \text { Keep }
\end{array}
$$

(1) Flied and $\times 2$
(2) Flipped and $x 2$ (3) K up
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\partial_{2}(\mathrm{~g}) \quad \Delta H_{1}^{0}$ (changed) $=+285.8 \mathrm{~kJ} * 2$ $4 \mathrm{Hike}_{3}(\mathrm{l}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(g)+2 \mathrm{H}_{2} \mathrm{e}(\mathrm{l}) \quad \Delta H_{2}^{\circ}$ (changed) $=+76.6 \mathrm{~kJ} * 2$ $2 \mathrm{~N}_{2}(\mathrm{~g})+\chi^{5} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{HNO}_{3}(\mathrm{l}) \Delta \mathrm{H}_{3}{ }^{0}=-696.4 \mathrm{~kJ}$

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})
$$

(A) $\quad-95.8 \mathrm{~kJ}$.
(B) +371 kJ .
(C) +28.4 kJ .
(D) -1059 kJ .
(E) +1345 kJ .
23. The heat of formation $\left(\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ is $-315.4 \mathrm{~kJ} / \mathrm{mol}$. The chemical equation associated with this reaction is:
(A) $\quad 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})+3 / 2 \mathrm{Cl}_{2}(\mathrm{~g})$
(B) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (s)
(C) $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (s)
(D) $\quad \mathrm{NH}_{4}^{+}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{s}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (s)
(E) $\quad \mathrm{NH}_{4}(\mathrm{~s})+\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
24. Consider:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}^{\circ} \text { reaction }=-10900 \mathrm{~kJ}
$$

How much energy is released when 4.0000 moles of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, is combusted?
(A) 10900 kJ .
(B) 21800 kJ
(C) 32700 kJ .
(D) 43600 kJ .
(E) 87200 kJ .

25. Which one of the following statements is TRUE? Any
(A) The CH 121 Final Exam is scheduled for 7:30-9:20am on Tuesday, December 6, 2005.
(B) The CH 121 Final Exam is scheduled for 7:30-9:20am on Tuesday, December 6, 2005.
(C) The CH 121 Final Exam is scheduled for 7:30-9:20am on Tuesday, December 6, 2005.
(D) The CH 121 Final Exam is scheduled for 7:30-9:20am on Tuesday, December 6, 2005.
(E) The CH 121 Final Exam is scheduled for 7:30-9:20am on Tuesday, December 6, 2005.

