Fall 2005
October 20, 2005

Oregon State University Dr. Richard Nafshun

Test Form 2

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form and note card in the appropriate stacks. You may keep the exam packet, so please show your work and mark the answers you selected on it.

$$
1 \text { inch }=2.54 \mathrm{~cm}(\text { exact }) \quad 1 \mathrm{~mole}=6.02 \times 10^{23}
$$

IA																	VIIIA
$\stackrel{1}{\mathrm{H}}$ -Hydrogen 1.0079	IIA											IIIA	IVA	VA	VIA	VHA	2 He Helium 4.0026
$\begin{gathered} { }^{3} \\ \text { Lii } \\ \text { Lithium } \\ 6.941 \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ \mathrm{Be} \\ \text { Beryllium } \\ 9.01218 \\ \hline \end{array}$				"							$\begin{gathered} 5 \\ \mathbf{B} \\ \text { Borm } \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ \text { Cabbon } \\ 12.011 \end{gathered}$	$\begin{gathered} 7 \\ \stackrel{7}{\mathrm{~N}} \\ \text { Nitrogen } \\ 14.0067 \end{gathered}$	$\begin{gathered} 8 \\ \text { O } \\ \text { oxygen } \\ 15.9994 \end{gathered}$	$\begin{gathered} 9 \\ \text { Fluorne } \\ \text { Fis.9984 } \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ \mathrm{Neon} \\ 20.179 \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ \text { Sodimm } \\ 22.98977 \end{gathered}$	$\underset{\substack{12 \\ \mathrm{Mg} \\ \text { Magnesium } \\ 24305}}{\substack{20 \\ 2}}$	1188	IVB	VB.	VIB	VIIB		$\underbrace{\text { vio}}$		1B	IIB	13 Al Aluminum 26.9815	$\begin{gathered} 14 \\ \mathrm{Si} \\ \text { Silicon } \\ 28.0855 \end{gathered}$	$\begin{gathered} 15 \\ \cdots \dot{\mathrm{P}} \\ \text { Phosphoirs } \\ 30.97376 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ \text { Sulfur } \\ 32.06 \end{gathered}$	17 Cl Chlorine 35.453	18 Ar Argon 39.948
$\underset{\substack{19 \\ \text { Potassium } \\ \text { 39.0983 }}}{\substack{19 \\ \hline}}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ \text { Calcium } \\ 40.08 \end{gathered}$	21 Sc Scandium 44,9559	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \substack{22 \\ \hline \text { Tinnium } \\ 47.88} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 23 \\ \mathrm{~V} \\ \text { Vanadium } \\ \text { 50.9415 } \\ \hline \end{array}$	$\|$24 Cr Chromium 51.996	$\begin{gathered} 25 \\ \mathrm{Mn} \\ \text { Manganese } \\ \text { s4.9380 } \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ \text { Iron } \\ 55.847 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \mathrm{CO} \\ \text { Cobalt } \\ 58.9332 \end{gathered}$	$\begin{gathered} .28 \\ \mathrm{Ni} \\ \text { Nickel } \\ .58 .70 \end{gathered}$	29 Cu Copper 63.546	$\begin{gathered} 30 \\ \stackrel{30}{\mathrm{Zn}} \\ \mathrm{Zinc} \\ \dot{65.38} \end{gathered}$	$\begin{gathered} 31 \\ \text { Ga } \\ \text { Galhum } \\ 69.72 \end{gathered}$	32 Ge Germaniuva 72.59.	33 As Arsenic 74.9216	 Se Seleuium 78.96	35 Br Bromine 79.904	$\begin{gathered} 36 \\ \mathrm{Kr} \\ \text { Krypton } \\ 83.80 \end{gathered}$
37 Rb Rubidium 85.4678	$\begin{gathered} 38 \\ \mathrm{Sr} \\ \text { Strontium } \\ 87.62 \end{gathered}$	39 Y Yurium 88.9059	$\begin{gathered} 40 \\ \mathrm{Zr} \\ \text { Zirconium } \\ 91.22 \\ \hline \end{gathered}$	$\begin{gathered} 41 \\ \mathrm{Nb} \\ \text { Niobium } \\ 929064 \\ \hline \end{gathered}$	42 Mo Molybdenum 95.94	43 Tc Techneium 98.006	44 Ru Rutherium 101.07	45 Rh Rhodium 102.9055		$\begin{gathered} 47 \\ \mathrm{Ag} \\ \text { Silver } \\ 107.868 \end{gathered}$	48 Cd Cadmium 112.41	$\begin{gathered} 49 \\ \text { In } \\ \text { Indium } \\ \text { I14.82 } \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ \mathrm{Tin} \\ 118.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 51 \\ \mathrm{Sb} \\ \text { Antimony } \\ 121.75 \end{gathered}$	52 Te Tellurium 127.60	$\begin{gathered} \hline 53 \\ \mathrm{I} \\ \text { 1odine } \\ 126.9045 \\ \hline \end{gathered}$	$\begin{gathered} 54 \\ \mathrm{Xe} \\ \text { Xenon } \\ 131.30 \end{gathered}$
$\begin{gathered} 55 \\ \mathrm{Cs} \\ \text { Cesium } \\ 132.9054 \end{gathered}$	$\begin{gathered} 56 \\ \mathrm{Ba} \\ \text { Barlum } \\ 137.33 \end{gathered}$	$\underbrace{57-71}$	$\begin{gathered} 72 \\ \text { Hf } \\ \text { Hafnium } \\ 178.49 \end{gathered}$	$\begin{array}{\|c\|} \hline 73 \\ \mathrm{Ta} \\ \text { Tanalum } \\ \text { 180.9499 } \\ \hline \end{array}$	$\begin{gathered} 74 \\ \text { W } \\ \text { Tungsten } \\ \text { 183.85 } \\ \hline \end{gathered}$	75 Re Rherium 186.207	$\begin{gathered} 76 \\ \text { Os } \\ \text { Osmium } \\ 190.2 \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ \text { Ir } \\ \text { Iridium } \\ 192.22 \\ \hline \end{gathered}$		$\begin{gathered} 79 \\ \mathrm{Au} \\ \text { Gold } \\ 196.9665 \\ \hline \end{gathered}$	80 Hg Mercury 200.59	$\begin{gathered} \hline 81 \\ \mathrm{Tl} \\ \text { Thallium } \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ \text { Lead } \\ 207.2 \end{gathered}$	83 Bi Bismuth 208.9804	84 Po Polonium (209)	$\begin{gathered} 85 \\ \text { At } \\ \text { Astatine } \\ \text { (210) } \end{gathered}$	86 Rn Radon (222)
87 Fr. Francium (223)	88 Ra Radium 226.0254	89-103 ${ }^{\dagger}$ Actinides		105 Ha Hahnium (262)			$\begin{gathered} \hline 108 \\ \mathrm{Hs} \\ \text { Hassium } \\ (265) \end{gathered}$	\qquad	$\underset{\ddagger}{110} \underset{\ddagger}{ }$ (269)	$\begin{gathered} 111 \\ \ddagger \end{gathered}$.	114				

57 La Lantanium 138.905s	58 Ce Cerium 140.12	59 P Pr Friseodymum 140.9077	60 Nd Neadytilum 144.24	61 Pm Pronnethium 145	$\begin{gathered} 62 \\ \mathrm{Sm} \\ \text { Semarium } \\ 150.4 \end{gathered}$	$\begin{gathered} 63 \\ \mathrm{Eu} \\ \text { Ewropium } \\ 151.96 \end{gathered}$	64 Gd Gadolinium 157.25	65 Tb Terbium 158.9254	$\begin{gathered} 66 \\ \text { Dy } \\ \text { Dysprosium } \\ 162.50 \end{gathered}$	67 Ho Holmium 164.9304	68 Er Erblum 167,26	69. Tm Thulium 168.9342	$\begin{gathered} 70 \\ \mathrm{Ytterbium} \\ \mathrm{Yb} \\ \hline 73.04 \end{gathered}$	71 Lu Lutetium 174.967
89 Ac Actinium 227.0278	90 Th Thoriun 232.0381	$\left\|\begin{array}{c} 91 \\ \mathrm{~Pa} \\ \text { Procactinium } \\ 231.0359 \end{array}\right\|$	$\begin{gathered} 92 \\ \mathrm{U} \\ \text { Uranium } \\ 238.029 \end{gathered}$	$\begin{array}{\|c\|} \hline 93 \\ \mathrm{~Np} \\ \text { Neptunium } \\ \text { 237.0482 } \end{array}$	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Califormium (25I)	$\underset{\substack{99 \\ \text { Einsteinium } \\ \text { (254) }}}{ }$	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium 259	103 Lr Lawrencium 262

1. A student measures the length of a sodium fluoride crystal to be 0.03080 cm .
(A) There are two significant figures in this measured quantity.
(B) There are three significant figures in this measured quantity.
(C) There are four significant figures in this measured quantity.
(D) There are five significant figures in this measured quantity.
(E) There are six significant figures in this measured quantity.

2. Consider the following operation: $45.07 \mathrm{~m} * 5.34310 \mathrm{~m}$. The correct answer with the proper number of significant figures is:

3. Which of the following is false?
(A) A student constructs a bike frame of iron, chromium, and manganese. This is an alloy. True
(B) Calcium nitride is an ionic compound and helium is an inert gas. True
(C) Nitrogen and oxygen can form a molecule. True
(D) Carbon monoxide is a polyatomic ion. False $C O$ is a molecule
(E) Fluorine and chlorine are expected to behave similarly because they are in the same group. True
4. Consider $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. Each unit contains:
(A) Three calcium ions, one phosphorus ion, and two oxide ions
(B) One calcium ion, one phosphorus ion, and two oxide ions
(C) Three calcium ions, two phosphorus ions, and four oxide ions
(D) One calcium ion, three phosphorus ions, and two oxide ions
(E) Three calcium ions, two phosphate ions

5. Which of the following chemical formulae is incorrect?

6. ${ }^{235} \mathrm{U}^{2+}$ has:
(A) 92 protons, 143 neutrons, 90 electrons
(B) 235 protons, 235 neutrons, 235 electrons
(C) 235 protons, 235 neutrons, 237 electrons
(D) 92 protons, 146 neutrons, 90 electrons
(E) 92 protons, 92 neutrons, 94 electrons

7. A student measures the volume of a camphor crystal to be 2.37 inches ${ }^{3}$. Expressed in cm^{3}, this volume is:
(A) $0.933 \mathrm{~cm}^{3}$
(B) $6.02 \mathrm{~cm}^{3}$
(C) $38.8 \mathrm{~cm}^{3}$
2.37 in $^{3}\left(\frac{2.54^{3} \mathrm{~cm}^{3}}{1^{3} \mathrm{ingh}^{3}}\right)^{3}=38.8 \mathrm{~cm}^{3}$
(D) $0.145 \mathrm{~cm}^{3}$
(E) $\quad 6.91 \mathrm{~cm}^{3}$
8. Two elements that will form $2+$ ions in ionic compounds are:
(A) O and S

(B) $\quad \mathrm{N}$ and P
(C) Cl and Br
(D) Ba and Ca
(E) Na and K
9. The chemical formula of magnesium carbonate is:
(A) $\mathrm{Mg}_{2} \mathrm{C}$
(B) $\quad \mathrm{MgC}_{2}$
(C) $\quad \mathrm{Mg}_{2} \mathrm{CO}_{3}$

(D) $\quad \mathrm{Mg}\left(\mathrm{CO}_{3}\right)_{2}$
(E) MgCO_{3}
10. Which of the following chemical formulae is incorrect?

(A)	$\mathrm{N}_{2} \mathrm{H}_{4}$
(B)	NH_{4}
(C)	CCl_{4}

(D) $\mathrm{CH}_{3} \mathrm{COOH}$

(E) $\mathrm{CH}_{3} \mathrm{OH}$

11. When combined with sulfur, a Group 2 element will tend to:
(A) Gain one electron

(B) Gain two electrons electrons
(C) Lose one electron
(D) Lose two electrons
(E) Donate a proton
12. Which of the following pairs of elements will form an ionic compound?
(A) Xenon and neon
(B) Xenon and nitrogen
(C) Carbon and oxygen
(D) Aluminum and oxygen
(E) Carbon and nitrogen
13. Which of the following pairs are isotopes? Same number of p
$\begin{array}{llll}\text { (A) } & { }^{16} \mathrm{~N} & \text { and } & { }^{16} \mathrm{O} \\ \text { (B) } & { }^{15} \mathrm{~N} & \text { and } & { }^{15} \mathrm{O} \\ \text { (C). } & { }^{14} \mathrm{~N} & \text { and } & { }^{16} \mathrm{~N} \\ \text { (D) } & { }^{20} \mathrm{~F} \text { and } & { }^{20} \mathrm{Ne}\end{array}$
(E) ${ }^{40} \mathrm{Ar}$ and ${ }^{20} \mathrm{Ne}$
14. The mass percent composition of carbon in hexane, $\mathrm{C}_{6} \mathrm{H}_{14}$, is:
(A) 86.18%
(B) 72.07%
(C) 13.94%
(D) 92.26%
(E) 83.63%

Mase percent $C=\frac{\text { part }}{\text { whole }}$

$$
=\frac{6 k 12.011 \mathrm{~m} / \mathrm{mol}}{86.18 \mathrm{~mol}}=83.63 \%
$$

15. The chemical formula of strontium phosphate is:
(A) $\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
(B) $\quad \mathrm{Sr}_{2}\left(\mathrm{PO}_{4}\right)_{3}$.

(C) SrPO_{8}.
(D) $\quad \mathrm{Sr}_{3} \mathrm{P}_{2}$.
(E) $\quad \mathrm{Sr}_{2} \mathrm{P}_{3}$.

16. The name of $\mathrm{N}_{2} \mathrm{O}_{5}$ is?
(A) dinitrogen pentoxide

$$
\begin{gathered}
\mathrm{N}_{2} \mathrm{O}_{5} \\
\text { dinitrogen pentoxide } \\
\text { [use prefixes for molecules] } \\
\text { non-metals }
\end{gathered}
$$

(B) nitrate
(C) pernitritethingamajig
(D) nitrogen oxide
(E) oxygen pentanitrate
17. Which of the following is a non-metal?
(A) potassium
(B) titanium
(C) sulfur
(D) osmium
(E) sodium nitrate

18. A fictitious element, Beaverium, has two naturally occurring isotopes. ${ }^{285} \mathrm{Bv}$ has a mass of $284.67 \mathrm{~g} / \mathrm{mol}$ and is 28.7557% abundant. ${ }^{288} \mathrm{Bv}$ has a mass of $287.73 \mathrm{~g} / \mathrm{mol}$ and is 71.2443% abundant. What is the average atomic mass of Beaverium?
(A) $285.96 \mathrm{~g} / \mathrm{mol}$.
(B) $287.96 \mathrm{~g} / \mathrm{mol}$.
(C) $286.96 \mathrm{~g} / \mathrm{mol}$
(D) $286.85 \mathrm{~g} / \mathrm{mol}$.
(E) $286.20 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
\text { Atomic mass } & =\left(284.67 \frac{\mathrm{~A}}{\mathrm{~mol}}\right)(0.287557)+(287.73 \% .1)(0.712443) \\
& =286.85 \% \mathrm{~mol}
\end{aligned}
$$

19. The atomic mass of sulfur is:
(A) $16 \mathrm{~g} / \mathrm{mol}$
(B) $16.00 \mathrm{~g} / \mathrm{mol}$
(C) $32.06 \mathrm{~g} / \mathrm{mol}$
(D) $1.93 \times 10^{25} \mathrm{~g} / \mathrm{mol}$
(E) $5.33 \times 10^{-23} \mathrm{~g} / \mathrm{mol}$

20. The molar mass of lithium oxide is:
(A) $29.88 \mathrm{~g} / \mathrm{mol}$
(B) $22.94 \mathrm{~g} / \mathrm{mol}$
(C) $38.94 \mathrm{~g} / \mathrm{mol}$
(D) $1.38 \times 10^{25} \mathrm{~g} / \mathrm{mol}$
(E) $2.34 \times 10^{25} \mathrm{~g} / \mathrm{mol}$

21. A student ($\overbrace{}^{4}$) obtains 49.33 grams of silicon. This is:
(A) 690.6 moles
(B) 3.524 moles
(C) 2.97×10^{25} moles
(D) 8.19×10^{-23} moles
(E) 1.756 moles
22. A student ($\overbrace{}^{4}$.) obtains 340.72 grams of gold. This is:
(A) 1.73 gold atoms
(B) 2.05×10^{26} gold atoms
(C) 4.04×10^{28} gold atoms
$340.72 \mathrm{~g} \operatorname{Au}\left(\frac{1 \mathrm{nol}}{196.9665},\left(\frac{6.02 \times 10^{23}}{\text { atoms }}\right)=1.04 \times 10^{24} \mathrm{~mol}\right.$ Au atoms
(D) $\frac{1.04 \times 10^{24} \text { gold atoms }}{2.87 \times 10^{-24} \text { gold atoms }}$

素 0 。

23. When the reaction

(A) $9 \mathrm{O}_{2}$ are consumed.
(B) $14 \mathrm{O}_{2}$ are consumed.
(C) $6 \mathrm{O}_{2}$ are consumed.
(D) $18 \mathrm{O}_{2}$ are consumed.
(E) $10 \mathrm{O}_{2}$ are consumed.
24. A student (flit $^{(1)}$) places 116.9 grams of sodium chloride into a $1.000-\mathrm{L}$ volumetric flask and fills to the mark with water. The concentration of this solution is:

25. Because of Chemistry $121 \ldots$
(A) I driftoutof consciousness when I hear the words "ChemSkill Builder."
(B) I have become a social butterfly.
(C) My softball average has increased from .285 to .460 .
(D) I have laughed more times in the past four weeks than I have in the previous four years.
(E) I have switched to a dandruff shampoo.
(F) I have realized that there is no place on a Scantron form to indicate (F) as an answer.
[Any response will receive full credit; even no response.]
