Test Form 1

Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your test form number (listed above), last name, first name, middle initial, and student identification number. Leave the class section number and the test form number blank.

This exam consists of 25 multiple-choice questions. Each question has four points associated with it. Select the best multiple-choice answer by filling in the corresponding circle on the rear page of the answer sheet. If you have any questions before the exam, please ask. If you have any questions during the exam, please ask the proctor. Open and start this exam when instructed. When finished, place your Scantron form and note card in the appropriate stacks. You may keep the exam packet, so please show your work and mark the answers you selected on it.

Abbreviated Solubility Rules:

Rule 1:All nitrates, group 1A metal salts and ammonium salts are soluble.
Rule 2: All carbonates, hydroxides, phosphates and sulfides are insoluble.
Rule 3:Rule 1 always takes precedent.

$\mathrm{R}=0.0821 \frac{\mathrm{~L} \bullet \mathrm{~atm}}{\mathrm{~mol} \bullet K}$	$\mathrm{R}=8.314 \frac{\mathrm{~kg} \bullet \mathrm{~m}^{2}}{\mathrm{~s}^{2} \bullet \mathrm{~mol} \bullet \mathrm{~K}}$	$\mu_{r m s}=\sqrt{\frac{3 R T}{\text { Molar Mass }}}$
$\mathrm{PV}=\mathrm{nRT}$	$760 \mathrm{Torr}=1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$	$\mathrm{K}=273.15+{ }^{\circ} \mathrm{C}$
1 mole $=6.02 \times 10^{23}$	$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$	milli $(\mathrm{m})=1 / 1000$

Substance	$\mathbf{J} / \mathbf{g} \cdot{ }^{\circ} \mathbf{C}$
Water	4.184
Methyl Alcohol	2.549
Ice	2.093
Steam	2.009
Benzene	1.750
Wood (typical)	1.674

Substance	$\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathbf{C}$
Soil (typical)	1.046
Air	1.046
Aluminum	0.901
Mercury	0.138
Gold	0.130
Lead	0.128

Name		Formuh
Hydroxide	1-	OH^{-}
Cyanide	1-	$\mathbf{C N}^{-}$
Nitrate	1-	$\mathrm{NO}_{3}{ }^{-}$
Acetate	1-	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
Carbonate	2-	$\mathrm{CO}_{3}{ }^{\text {- }}$
Phosphate	3-	$\mathrm{PO}_{4}{ }^{\text {3- }}$
Hydronium	1+	$\mathrm{H}_{3} \mathrm{O}^{+}$
Ammonium	1+	$\mathrm{NH}_{4}{ }^{+}$
Sulfate	2-	$\mathrm{SO}_{4}{ }^{\text {2- }}$

[Period Table of the Elements Here]

1. How many grams of $\mathrm{CO}_{2}(\mathrm{~g})$ are theoretically produced from 216.45 g of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})$, and an excess amount of oxygen?

(A) $26.41 \mathrm{~g} \mathrm{CO}_{2}(\mathrm{~g})$ are produced.
(B) $132.28 \mathrm{gCO}_{2}$ (g) are produced.
(C) $660.17 \mathrm{~g} \mathrm{CO}_{2}(\mathrm{~g})$ are produced.
(D) $1082.25 \mathrm{~g} \mathrm{CO}_{2}$ (g) are produced.
(E) $360.75 \mathrm{~g} \mathrm{CO}_{2}(\mathrm{~g})$ are produced.
2. Which of the following ionic compounds is insoluble in water?

3. Which of the following ionic compounds is soluble in water?
(A) NaOH All sodium salts are soluble
(B) $\quad \mathrm{Al}(\mathrm{OH})_{3}$
(C) $\quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(D) $\quad \mathrm{SrCO}_{3}$
(E) AlPO_{4}
4. A student calculates that 340.4 grams of carbon dioxide should theoretically be produced during a process. He actually recovers 302.2 grams of carbon dioxide. What is the percent yield for this process?
(A) 1.126%.
(B) 11.26%.

Percent Yield $=\frac{\text { actual }}{\text { theoratieal }} \cdot 10070=\left(\frac{302.29}{340.49}\right)\left(\frac{10070)}{88.78 \%}\right.$
(C) 112.6%.
(D) 12.64%.
(E) 88.78%
5. A student dissolves four moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ into a beaker of water. How many sodium ions are present in the solution?
(A) There are 4.82×10^{24} sodium ions in the beaker.
(B) There are 9.63×10^{24} sodium ions in the beaker.
(C) There are 1.20×10^{24} sodium ions in the beaker.
(D) There are 2.41×10^{24} sodium ions in the beaker.
(E) There are 6.02×10^{23} sodium ions in the beaker.

$$
4 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}\left(\frac{2 \mathrm{~mol} \mathrm{Na}^{+}}{1 \text { mol } \mathrm{Na}_{2} \mathrm{CO}_{3}}\right)\left(\frac{6.02 \times 10^{23} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{Na}}\right)=4.82 \times 10^{24} \mathrm{Na}^{+}
$$

6. A student mixes two solutions: $\mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$. The solid precipitate formed is:
(A) KNO_{3} (s)
(B) $\quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (s).
(C) $\mathrm{KOH}(\mathrm{s})$.
(D) $\mathrm{CaO}(\mathrm{s})$.
(E) $\quad \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{~s})$.

7. A student obtains a Thermos ${ }^{\circledR}$ bottle at $24.1^{\circ} \mathrm{C}$ and 0.989 atm . The student closes the bottle containing air [$78 \% \mathrm{~N}_{2}(\mathrm{~g}) ; 21 \% \mathrm{O}_{2}(\mathrm{~g}) ; 1 \%$ other gases]. The student places the bottle over a Bunsen burner so the bottle and the air heat up to $30.5^{\circ} \mathrm{C}$. Which of the following is true?
(A) The gases inside the bottle are traveling faster at the higher temperature than at the lower temperature; the pressure inside the bottle is higher at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is higher at the higher temperature than at the lower temperature.
(B) The gases inside the bottle are traveling the same velocity at the higher temperature than at the lower temperature; the pressure inside the bottle is higher at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is higher at the higher temperature than at the lower temperature.
(c) The gases inside the bottle are traveling the samely at the higher temperature than at the lower temperature; the pressure inside the bottle is the same at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is the same at the higher temperature than at the lower temperature.
(D) The gases inside the bottle are traveling faster at the higher temperature than at the lower temperature; the pressure inside the bottle is higher at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is the same at the higher temperature than at the lower temperature.
(E) The gases inside the bottle are traveling the samelocity at the higher temperature than at the lower temperature; the pressure inside the bottle is lower at the higher temperature than at the lower temperature; the number of moles of gas present inside the bottle is the same at the higher temperature than at the lower temperature.
8. A student obtains 25.00 mL of NaOH (aq) of unknown concentration. Upon titration, 32.55 mL of $0.2305 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ are required for neutralization. Determine the concentration of the NaOH (aq).
(A) $\quad 3.332 \mathrm{M}$
(B) 187.57 M
(C) 18.757 M
(D) 0.3001 M
(E) 0.1770 M

At then nentratizationpoint : moles HOle $=$ moles NaH

$$
\begin{aligned}
M_{\text {mar }} V_{\text {Me }} & =M_{\mathrm{MaOM}} V_{\mathrm{HaOM}} \\
(0.2305 \mathrm{M})(32.55 \mathrm{~mL}) & =\left(\mathrm{M}_{\mathrm{NaOM}}\right)(25.00 \mathrm{~nL}) \\
M_{\mathrm{MaOH}} & =0.3001 \mathrm{M}
\end{aligned}
$$

9. A student dilutes 400.0 mL of 1.500 M NaOH to a new volume of 750.0 mL . The concentration of the new solution is:
(A) 0.8000 M

$$
M_{\text {Before }} V_{\text {Before }}=M_{\text {After }} V_{\text {After }}
$$

(B) 1.250 M

$$
(1.500 \mathrm{~m})(400.0 \mathrm{~mL})=(\text { M After })(750.0 \mathrm{~mL})
$$

(C) $\quad 4.500 \mathrm{M}$
(D) 0.2222 M

Master $=0.8000 \mathrm{M}$
(E) $\quad 0.3556 \mathrm{M}$
$k=273.15+32=305.15 k \quad k=273.15+(-12.0)$
$=261.15 k$
10. A student obtains a 3.25 liter balloon at $32.0^{\circ} \mathrm{C}$. She cools the balloon to $-12.0^{\circ} \mathrm{C}$. The volume of the balloon at $-12.0^{\circ} \mathrm{C}$ is:

$$
P V=\text { ART }
$$

(A) 2.78 L

$$
\text { (C) } \quad 0.821 \mathrm{~L}
$$

$$
\frac{V_{1}}{N_{1}}=\frac{P / V_{2}}{V_{2} T_{2}} \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \frac{3.25 \mathrm{~L}}{305.15 \mathrm{~K}}=\frac{V_{2}}{261.15 \mathrm{~K}}
$$

$$
\text { (D) } \quad 0.360 \mathrm{~L}
$$

(E) $\quad 3.60 \mathrm{~L}$

$$
Y_{2}=2.78 \mathrm{~L}
$$

11. A student places 1.854 g of a gas into a $1.12-\mathrm{L}$ container at 273 K and measures the pressure to be 0.977 atm . This gas is:

$$
\text { PV. ART } n=\frac{P V}{R T}=\frac{(0.977 \mathrm{at} \mathrm{\alpha})(1,12 y)}{\left(0.0821 \frac{k a+m}{\mathrm{kmal} .4 \mathrm{~K}}\right)(273 \mathrm{k})}
$$

(A) $\frac{\mathrm{H}_{2}}{(\mathrm{~F})}$
(C) Cl_{2}
(D) N_{2}
$n=0.0488 \mathrm{mal}$
(E) $\quad \mathrm{O}_{2}$

Molar Mass $=\frac{9}{m a 1}=\frac{1.854 \mathrm{~g}}{0.0498 \mathrm{mal}}=$
$37.98 \frac{9}{4.1}$
12. A student places 320.0 grams of oxygen gas $\left(\mathrm{O}_{2}\right)$ into a $450.0-\mathrm{L}$ flask at 273 K . The pressure inside the flask is:
(A) 0.0627 atm . $P V=$ RT $\rightarrow 320.0 \mathrm{~g} \mathrm{O}_{2}\left(\frac{1 \mathrm{~mol}}{32 \mathrm{~g}}\right)=10.0 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$
(B) 15.9 atm .
(C) 2.00 atm .
(D) 0.498 atm .
$P=\frac{n R T}{V}=\frac{(10.0 n \neq 1)\left(0.0821 \frac{Y / a+m}{m / 11 K}(273 k)\right.}{450}$
(E) 1.00 atm .
13. A student places 4.00 moles of $\mathrm{Xe}(\mathrm{g})$ and 12.00 moles of $\mathrm{CO}_{2}(\mathrm{~g})$ into a flask at 298 K and measures the pressure to be 4.00 atm . The pressure due to $\mathrm{Xe}(\mathrm{g})$ is:

14. The root-mean-square speed of $\mathrm{He}(\mathrm{g})$ at 0.9330 atm and 273.0 K is:
(A) $434 \mathrm{~m} / \mathrm{s}$

$=30 \mathrm{~m}$
15. Consider the following five gases: $\mathrm{F}_{2}(\mathrm{~g}) \quad \mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{He}(\mathrm{g}) \quad \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \quad \mathrm{N}_{2}(\mathrm{~g})$

Of these, the gas with the lowest velocity at room temperature is:
(A)
$\frac{\mathrm{F}_{2}(\mathrm{~g})}{\mathrm{I}_{2}(\mathrm{~g})}$
(C) He (g)
(D) $\quad \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
(E) $\quad \mathrm{N}_{2}(\mathrm{~g})$.
16. The reaction below takes place in a room (a constant pressure of 1.00 atm and a constant temperature of 293 K for both reactants and products).

When 7.00 L of $\mathrm{C}_{11} \mathrm{H}_{24}(\mathrm{~g})$ react,
(A) $3.50 \mathrm{~L} \mathrm{of}_{\mathrm{CO}}^{2}$ are formed.
(B) 7.00 L of CO_{2} are formed.
(C) 119 L of CO_{2} are formed.
(D) 77.0 L of CO_{2} are formed.
(E) 84.0 L of CO_{2} are formed.
17. Shown below is the balanced equation for the combustion of butane. What is the volume (liters) of $\mathrm{CO}_{2}(\mathrm{~g})$ produced at 1.500 atm and 298.0 K from the combustion of excess $\mathrm{O}_{2}(\mathrm{~g})$?
116.24 g

$$
\begin{aligned}
& 2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\quad 13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad 8 \mathrm{CO}_{2}(\mathrm{~g})+\quad 10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \begin{array}{l}
16.243 \\
0.3
\end{array} \\
& 2.00 \mathrm{~mol} \longrightarrow \text { Q } 0.00 \mathrm{~mol} \\
& \text { (1) } 116.24 \mathrm{~d} \mathrm{C}_{4} \mathrm{H}_{10}\left(\frac{1 \mathrm{~mol}}{58.12 \mathrm{~g}}\right)=2.00 \mathrm{mal} \mathrm{c}_{4} \mathrm{H}_{10}
\end{aligned}
$$

$$
\begin{aligned}
& P V=n R T \quad V=\frac{n R T}{P}=\frac{(8.00 m x)\left(0.082^{2} \frac{a t m}{m 6 l u x}\right)(29810)}{1.5002+m}=130.5 \mathrm{~L}
\end{aligned}
$$

(A) $\quad 125.5 \mathrm{~L}$
(B) $\quad 28.08 \mathrm{~L}$
(C) $\quad 112.3 \mathrm{~L}$
(D) $\quad 224.0 \mathrm{~L}$
(E) $\quad{ }_{130.5}^{130.2}$
18. Which of the following processes is exothermic?
(A) $16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g})$
(B) $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l)
(C) $\quad \mathrm{H}_{2} \mathrm{O}$ (l) $\rightarrow \mathrm{H}_{2} \mathrm{O}$ (g)
(D) $\quad \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}($ aq $)$
(E) $2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
19. How much heat is required to raise the temperature of 90.0 grams of water from $19.0^{\circ} \mathrm{C}$ to $89.0^{\circ} \mathrm{C}$?
(A) $152,190 \mathrm{~kJ}$
(B) 152 kJ
(C) 6.30 kJ
(D) 30.9 kJ
(E) 26.4 kJ
$q=m c \Delta T=(90.0 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g},{ }^{\circ} \mathrm{C}\right)\left(89.0^{\circ} \mathrm{C}-19.0^{\circ} \mathrm{C}\right)$
$=26,359 \mathrm{~J}$ or 26.4 kJ
20. A system takes in 1345 kJ of heat and does 3305 kJ of work. The change in internal energy is:
(A) +4650 kJ .
(B) -4650 kJ .
(C) +1960 kJ .
$\Delta E=\omega+q=(-3305 \mathrm{~kJ})+(+1345 \mathrm{~kJ})$
does work $=(-)$
$=-1960 \mathrm{~kJ}$
(D) -1960 kJ .
21. Use the data in the table below to answer the following question:

$\Delta \mathrm{H}^{\circ}$	$(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$	+49.0
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.9

What is $\Delta \mathrm{H}^{\circ}$ reaction for the following reaction?

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \begin{array}{llll}
+49.0
\end{array} \quad-393.5 \quad-285.9 \\
& \Delta H_{r x+n}^{0}=\text { Products }- \text { Reactants }=\left[(6 \mathrm{~mol} \mathrm{cos})\left(-393.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)+(3 \mathrm{~mol} \mathrm{H} \mathrm{H} \mathrm{O})\left(-285.9 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)\right] \\
& {\left[\left(1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}\right)\left(+49.0 \frac{\mathrm{~kJ}}{\mathrm{mal}}\right)\right]=-3268 \mathrm{~kJ}}
\end{aligned}
$$

(A) +335 kJ .
(B) -335 kJ
(C) -3268 kJ
(D) -6535 kJ .
(E) $\quad-8368 \mathrm{~kJ}$.
22. Determine $\Delta \mathrm{H}^{\circ}$ for this reaction:

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})
$$

using the following three equations:

$2 \mathrm{~N}_{2}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}$
(A) $\quad-95.8 \mathrm{~kJ}$.
(B) $\quad+371 \mathrm{~kJ}$
(D) +28.4 kJ .
(E) +1345 kJ .
23. The heat of formation $\left(\Delta \mathrm{H}^{\circ} \mathrm{f}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ is $-315.4 \mathrm{~kJ} / \mathrm{mol}$. The chemical equation associated with this reaction is:
(A) $\quad 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (s) $+3 / 2 \mathrm{Cl}_{2}(\mathrm{~g})$
(B) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (s)
(C) $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}^{(}$(s)
(D) $\quad \mathrm{NH}_{4}^{+}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{s}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (s)
(E) $\quad \mathrm{NH}_{4}(\mathrm{~s})+\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$ (s)

24. Consider:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}_{\text {reaction }}^{\circ}=-10900 \mathrm{~kJ}
$$

How much energy is released when 40.000 moles of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, is combusted?
(A) 10900 kJ .
(B) 21800 kJ .
(C) 32700 kJ .
(D) 43600 kJ .
(E) 218000 kJ .
25. Which one of the following statements is TRUE?
(A) The CH 121e Final Exam is $4: 00-5: 50 \mathrm{pm}$ Pacific Time on Tuesday, March 21, 2006.
(B) The CH 121e Final Exam is $4: 00-5: 50$ pm Pacific Time on Tuesday, March 21, 2006.
(C). The CH 121e Final Exam is 4:00-5:50pm Pacific Time on Tuesday, March 21, 2006.
(D) The CH 121e Final Exam is $4: 00-5: 50 \mathrm{pm}$ Pacific Time on Tuesday, March 21, 2006.
(E) The CH 121e Final Exam is 4:00-5:50pm Pacific Time on Tuesday, March 21, 2006.

